学年

教科

質問の種類

数学 高校生

極大値×極小値<0というところと、f(1)>0だから極小値<0という所までは分かったのですが、極小値の方のx座標になぜkを代入してるかが分からないです🙏

数学ⅡⅠ・数学B 第2問 (必答問題) (配点 30) (1) を実数とし, f(x)=2x+3(1-k)x²-6kx+3k² とおく。 ƒ'(x) = [ T[](x + [ 1 [])(x − k) ア である。 (1) k=1のとき, f(x) の極大値は ウ極小値はエオであり, y=f(x)のグラフの概形は である。 カ については,最も適当なものを、次の⑩~⑤のうちから一つ選べ。 y 女 ② H NO 6x² +6(1-1)X-61 6Xx² + (1-K)x-1) 6 (X-~(4)(x + 1) N -24- 135031 Vo ORAGEDBERG 7 10 SUM O ③ -x V A. O (数学ⅡⅠ・数学B 第2問は次ページに続く。) (2) 3次方程式 f(x)=0 めよう。 このことに関連して, 太郎さんと花子さんが話している。 太郎: 3次方程式 f(x)=0 の実数解は, y=f(x)のグラフとx軸の共 有点のx座標だね。 花子:y=f(x)のグラフとx軸の位置関係を考えればいいね。 の値によらず、(イ) ギ0 が成り立つから, 3次方程式 f(x) = 0 が異なる三つの実数解をもつようなんの値の範囲は k ケ である。 キ 0 At 数学ⅡⅠI・数学B が異なる三つの実数解をもつようなkの値の範囲を求 ク ク 2²+(1-1/X-1< の解答群 (同じものを繰り返し選んでもよい。) ① + fix)=2x² - 6x +3 1 f(x)=(x-1)(x+1) x=1-1 (数学ⅡI・数学B 第2問は次ページに続く。) TU VASJIITA JWT f(1)=2-6+3=-1 f(-1)=-2+6+3=7 -2+3(1-k)+6k+<D -243-3ktaktic² co 312+3+1 2 -}4* (3K+ (1+1) Sito Lo G

回答募集中 回答数: 0
数学 高校生

極限の問題です。 ⑴が分かりません。なぜ範囲が「-π/4<θ/2^(k+1)<π/4」と言えるのでしょうか?

& 8 数列の極限 / 漸化式 x<0 とするとき, 次の条件によって定められる数列{an}がある. (n=1,2,3, ......) (3) n10 表せ. ak+1= 2"×sin a1 cos 0 an = COS が成り立つことを示せ. 2n が成り立つことを証明せよ. (3) bn=axax as ×・・ π 0 <. 4 2k+1 Cn+1=2"x2sin 2ntr =2" x sin lib=lim 0 2 an+1= 解答量 (1) 数学的帰納法で示す. n=1のとき成り立つ. n=kで成り立つとすると, 1/(1+(n)=1/(1+ T Cn=2"sin- 0 2n 半角の公式を連想する 本問は三角関数がらみである. そこで与えられた漸化式を三角関数の公式 と関連させて眺めよう. すると, cos 0 = 2 0 X cos X cos 2 0 2n 0 2n 1+an 2 22 0 0 Cm は一定で, C=C=2cos sin 2 2 1+cos であるから, cos ......Xan (n=1, 2, 3, ..... とおく.0=0のとき, limb を0を用いて n→∞0⁰ (新潟大・理,医,歯) 0 22 X cos -X cos 2 n-∞ sin (0/2") 0 X cos 0 2k 0 2k+1 = ->0 よって,n=k+1でも成り立つから,数学的帰納法により証明された. (2) 与式の左辺をcm とおくと, ədalə 0 (aimagenranspot.come on COS 2n+1 2n+1 2 X cos X cos =sin( 23 X...... X cos nail 1+cos 0 2 COS .. ayaz......an ... sin0=2"sin 0/2" sin sin 0 0 22 0 2n 2 0 2k+1 X cos = sin (n=1, 2, 3, ………….) 0 2n 0 2n ak+1=COS の公式を連想するのは難しくはないだろう. X・・・・・・ X cos Cn -bn 0 2k+1 0 2n 1 (1+cosa) = cos2mm 2 √ x2 = |X|に注意して√を外 す。 ← (2) も数学的帰納法で示すこと ができる. 0 2n+1 (2sinacosa=sin2a) ←2sin COS 0 2n 0 2n+1 Cn+1=2x5in274 =sin 0 2n "xsin ni xcus=xcus=-=+=+= 1 x ... x cos x cus int →0 (n→∞)

回答募集中 回答数: 0
数学 高校生

基礎問題精講数1Aのこの問題について質問です。下線部1の「最小公倍数が196だから、14a'b'=196」となる理由と、下線部2の「ここで、最小公倍数をl(エル)とおくとmn=5×l 」となる理由が分かりません。よろしければ誰か教えてくれませんか?

SEPT 第5章 整数の性質 86 最大公約数 最小公倍数 (1) 180 84 の最大公約数と最小公倍数を求めよ. (2)2つの正の整数a,b (a>b) があって, 最大公約数は 14 最 小公倍数は196 である. α, bを求めよ. (3) 2つの正の整数m,n(m>n) があって, 最大公約数は 5. ま たmn=300 である. m, n を求めよ.やろ食 精講 最大公約数 最小公倍数は小学校で習っているなじみのある数学用 語ですが、高校になったからといって意味が変わるということはあ りません。しかし、扱い方が少し高度になります。 (1) 小学校では,右のようなわり算を行って, 最大公約数は 2×2×3=12, 最小公倍数は2×2×3×15×7=1260 と答を求めましたが,ここでは, 素因数分解して, 最大公約数の意味 「2つの数に共通の約数の中で最大のもの」 に従って, 最小公倍数も 「2つの数に共通の倍数の中で最小のもの」 に従って考えます. (2),(3) 数が具体的に与えられていません. そこで, ポイントにかいてある公 式を利用します. ここが, 少し高度になっているところです. 解答 (1) 180=2²×3²×5, 84=2²×3×7 よって, 最大公約数は, 22×3=12 また, 最小公倍数は 2²×3²×5×7=1260 素因数 2 180 2コ 84 2コ 多い方 2コ 少ない方 2コ 3 2コ 1コ コ 1コ 5 1コ 0 コ 1コ 7 07 2)180 84 2) 90 42 3) 45 21 15 7 1コ 1コ→2×3® ×5® x 7® コ 0コ → 2®×3D ◆各素因数について指 数が最小のもの 各素因数について指 数が最大のもの 最小公倍数 最大公約数 (2) 最大公約数が 14 だから,a=14c', b=146' a'b'は互いに素で、α'>' をみたす正の整数) 8 このとき、最小公倍数が196 だから,14q'b'=196① ∴.a'b'=14 143 kot, (a', b')=(14, 1), (7, 2) (a,b)=(196,14), (98,28) (3) 最大公約数が5だから,m=5m'n=5n" m'n' は互いに素で, m'n' をみたす正の整数) ここで, 最小公倍数を!とおくと mn=51 が成りたつので160 : 60=5m'n' よって, m'n'=12 m'n' は互いに素だから (m', n')=(12, 1), (4, 3) tot, (m, n)=(60, 5), (20, 15) 注 1 「α, bが互いに素である」 とは, aとbが1以外の共通の約数を もたないことです。 注m'n') (6, 2) のとき, a=30, b=10 となり, 最大公約数は 5ではなく, 10 になってしまいます。 ポイント 演習問題 86 (6,2) は互いに素で ないので不適 2つの正の整数a,bの最大公約数がg, 最小公倍数が のとき ① a=a'g,b=b'g (α' と'は互いに素)と表せ , ②l=α'b'g, ab=gl が成りたつ (1) 12,3660の最大公約数と最小公倍数を求めよ. (2) 2つの正の整数a,b (a>b) があって, 最大公約数は12で最 小公倍数は144 である. α, bを求めよ。 (3) 2つの正の整数m,n (m>n) があって, 最大公約数は4で,積 は 160 である. m, n を求めよ。 第5章 PIC・COLLAGE

回答募集中 回答数: 0
数学 高校生

基礎ができてないので教えて欲しいです。 なんで2枚目の丸囲んでるところ、+2が出てくるんですか?

基礎問 186 103 絶対値のついた関数の積分 対数つける. ets bc (1) f(x)=fle-rldt (1<x<e)とするとき,次の問いに答えよ。 (1) f(x) を求めよ. (2) f(x) を最小にする の値を求めよ. 定積分する関数には、xとtの2文字が含まれています。このよう なとき、 「どちらの文字で積分するのか?」 ということが第1のポイ ントですが,これは 「dt」 を見るとわかります. すなわち,これは tで積分しなさい」 といっているのです. だから,積分を実行するとはい なくなって、だけが残ることになります. 左辺が 「f(x)」 とかいてあるのは このためです. 第2のポイントは,積分の方法です。基本的には絶対値がついているので 「はずす」ことになりますが, 102 の精選に, 精講 ⅡI. グラフを利用する とあります。 今回はこれを利用します。すなわち, y = et と y=x のグラフ を利用しますが,問題は,y=x のグラフです.「原点を通り,傾き1の直線で しょ?」 と思った人は要注意です。 解答 (1) 1<x<e だから, 0≦t≦1 において ef=x をみたすt が存在し, そのときのtの 値は t=10gx (右図参照) ( :. \et-x|={ -(et-x) -{-le = et-x [agetc (of よって、 Clog.x Eleje] - [eff f(x) = -√ (e-x) dt+₁(e²-x) dt log.x to log k [e²-xt] log.x (0≤t≤log.x) (log x≤t≤1) + 10 Jlogx =-2(elogz-xlog) +1+e-x =2xlogx-3x+e+1 (elogs=xより) Ay y=et e 2C O |logx y=x

未解決 回答数: 1