学年

教科

質問の種類

数学 高校生

丸で囲った3ってなぜくるのですか? またどこの3ですか?

132 をx 意。 さみうちの原理 [3x] (2) lim(3*+5x) / 「次の極限値を求めよ。 ただし, [x]はxを超えない最大の整数を表す。 > 極限が直接求めにくい場合は、はさみうちの原理 (p.21852) の利用を考える。 x (1) n≦x<n+1 (nは整数)のとき [x]=n すなわち []≦x<[x]+1 よって [3x]≧3x<[3x]+1 3< a lim 100 このとき X→∞ よって X→∞ (ただしlim f(x)=limg(x)) となるf(x), g(x) を作り出す。 なお、記号[]はガウ みうちの原理を利用する。 (2) スが最大の項でくくり出すと (359(20) +1-1(20) +12 (2) の極限と ² { ( ²³ ) * + 1} ²³ の極限を同時に考えていくのは複雑である。 そこで、 はさ CHART 求めにくい極限 不等式利用ではさみうち [3x] x 答 | | 不等式 [3x]≧3x<[3x] +1が成り立つ。x>0のとき,各辺 | [3x] 1 をxで割ると ¥3 x x 1 [3x] +1 から 3 [3x] x この式を利用してf(x) [3x]≧ g(x)/ x X10 x→∞であるから x> 1 すなわち0< − <1と考えてよい。 はさみからのすからどう lim X→∞ .. X>1>0 [3x] =3であるから 2 (3¹+5³) * = [5*{( ³ )* +1}} * = 5{(³)*+1}* *th5_1<{( ³ )* +1} * < ( ³ ) ** +1 lim p.218 基本事項 5. 基本105 ここで, 3-1 [3x] x =3 +11であるからパー =1 lim(3+5)* - lim 5{()*+1}*-5-1 =5.1=5 はさみうちの原理 f(x)=(x)=g(x) で limf(x)=limg(x)=α x→∞であるから,x>10<<1と考えてよい。 x {( ²³ ) * + ¹}* < { ( ³ ) * + ¹} * < { ( ³ ) *+1}...(*) <A>1028, a<b2518 A°A°である。 x-00 ならば limh(x)=α などわかんなのが 225 [I][2A] 次の極限値を求めよ。ただし、[ ]はガウス記号を表す。 [(²³)*+ ( ²³ ) } * 底が最大の項5*でくくり 出す。 /31 * " + 1>1 であるから, (*)が成り立つ。 4章 16 関数の極限 (p.231 EX100

回答募集中 回答数: 0
数学 高校生

ガウス記号について理解が浅いのですが、写真の赤線の所はなぜマイナスがでてくるんですか?

500 第8章 整数の性質 *** 例題274 ガウス記号 (1)正の実数xを小数で表したとき,次の値をガウス記号を用いて表せ。 (ア) 小数点以下を切り上げた数(イ) 小数第1位を四捨五入した数 (2) [x+y]-[x] - [y] のとり得る値を求め 2つの実数x,yに対して, よ. 考え方 (1) (ア)は, たとえば, 小数点以下を切り上げると2になる数は, 1.1, 1.8, 2 などが当て はまり,1は当てはまらないことから、1<x≦2 を満たす x である. これを一般 の整数nについて考え,ガウス記号の定義を利用する。(イ)も同様。[] 解答(n-1<x≦n (nは整数)のとき,正の実数xの 小数部分を切り上げた数はnとなる. このとき, -n≦x<-n+1 [-x]=-n Focus (OFF(X)= よって, n=-[-x] より,求める数は, 601 -[-x] 830-1 1 (1) n-1/2/2x<n+1/12 (nは整数)のとき,正の実数 (イ) 71. -xの小数第1位を四捨五入した数はnとなる. このとき、n≦x+ +1/12/<n+1より、 =n よって求める数は1/2 Spot =(1-)!! (2) 0≦x<1,0≦β<1 とすると, x=[x]+α, y=[y]+β と表せるので __ x+y=[x]+[y]+a+ß (0≤a+B<2) (i) 0≦a+β<1のとき [x+y]=[x]+[y] (ii) 1≦a+β<2のとき -1 [x+y]=[x]+[y]+1 よって, (i), (i)より, $30 1- [x+y]-[x]-[y]=0, 1 -*=1 ガウス記号の定義を 利用できるように不 等式を整理する. caf10000 Ft ガウス記号については,まず具体的な数で実験する

回答募集中 回答数: 0
数学 高校生

(2)について、はさみうちを使わずに2枚目のように1^1/∞ = 1と答えるのは間違いでしょうか?

項④4. 基本132 中部大,関西大) +3x+x) して,まずい 分母・分子を ることに注意。 のもよい。 3x² √√x 1 √3x ・分子に -1 を掛け - で割る。 基本例題 134 関数の極限 ( 4 ) はさみうちの原理 次の極限値を求めよ。 ただし, [x]はxを超えない最大の整数を表す。 [3x] xC (1) lim x-x 指針 極限が直接求めにくい場合は, はさみうちの原理 (p.218⑤2) の利用を考える。 n≦x<n+1 (nは整数)のとき [x] = n すなわち [x] ≦x<[x]+1 よって [3x]≧3x<[3x] +1 この式を利用してf(x)≦ [3x] ≦g(x) x (ただしlim f(x)=limg(x)) となるf(x), g(x) を作り出す。なお,記号[]はガウ CHART 求めにくい極限 不等式利用ではさみうち 解答 (1) 不等式 [3x]≧3x<[3x]+1が成り立つ。x>0 のとき,各辺 [3x] [3x] 1 ≤ 3< + ここで, x x をxで割ると Arde ス記号という。 (2)が最大の項でくくり出すと (359(12/12/2)+1}* +] (1/2)" の極限と{(1/3) +1123 の極限を同時に考えていくのは複雑である。そこで、はさ 3< [3x] + 1/ # x x 練習 134 [x]+1から3- って みうちの原理を利用する。 x →∞であるから,x>1 すなわち0< − <1 と考えてよい。 x I im(3-1)=3であるから X このとき すなわち 1 (2) lim (3*+5)* X-8 < [3x] x tom{(1/2)+1)}=1であるから lim² lim x→∞ x [3x] +²=(()*+1}}={(²)+)² =! x→∞であるから,x>10<<1と考えてよい。 XC {( ²³ )* + 1}° <{( ³ ) * +1} * <{( ³ ) * +¹} *--- (*) 3- 3 1<{(1/2)+1/ 1¹ < { ( 3³ )* + 1} * < ( ²³ )* + 1 (1/28) lim =3 1 [3x] < x +1 =1 p.218 基本事項 5. 基本 105 ≤3 5 lim(3* + 5*) * = lim 5{( 3 )*+1} * = 5+1=5 x→∞ X→∞ はさみうちの原理 f(x)=(x)=g(x) で limf(x)=limg(x)=α →∞ 次の極限値を求めよ。ただし[] はガウス記号を表す。 0 [20] 1/²)² + ( ³ ) ²7 ² x-00 ならば limh(x)=α ∞ 底が最大の項5*でくくり 出す。 225 <A> 1 のとき, a <bならば A°<A° である。 (23) +1> (*)が成り立つ。 +1>1であるから、 Op.231 EX100 4章 16 関数の極限

回答募集中 回答数: 0
数学 高校生

絶対値の不等式の問題です。この不等号に=がつくときはプラスで、つかないときはマイナスの時って認識しております。それで(1)、(2)もとけているんですが、何故か、(3)からそれが違くなります。マイナスなのにイコールがつきます。どなたか教えてください。

|離席などの行為は、事故やトラ 0 日曜日 祝日の下記時間帯分の 1→ 105 次の方程式、不等式を解け。 □(1) | x+2|=6 噂 312-x≤4 frer 106 次の不等式を解け。 8≤|x-1|<9 (x-11 スタッフが入口で①クールから順に整理券を配布します。 ①クール分の配布が終了しましたら、②クール分、③クール分を配 その日の全クール分の整理券がなくなり次第配布終了となります。 整理券はお1人様1枚のみ配布します。 文字が左右 (7) 90(<9 =(1)) (-1 < 8 8 Day 演習 AA44 107 次の方程式、不等式を解け。 □(1) 2x-3=|x+1| 7314-3x|≦x 絶対値 AAAD '108 次の方程式 不等式を解け。 100|x|+|23|=3 口 (2) 1 V 3 1 2 3 1次不等式 12x+315 p.40 14. p.41 15 □ (2) 3x+2=2x-1| 414x31>-x+7 2x+3<3<5<2X*} p.42 例題 14 p.43 例題2②22 □②x-1|-|x|=2x x-1/+16-221>5 (4) |x-1|+|x+315 ISSISto 値記号の中の式の値が2つとも0以上の場合と、1つは0以上で1つは負 の場合と、両方とも負の場合に分けて考える。 P=la-s|xk| 578 109 P=√a-10a+25+164 +16 について 次の問い □(1) Pを絶対値記号を用いた式で表せ。 について、 口 (2) P=2となるαの値をすべて求めよ。 Passist B (1) は まず根号の中の式を因数分解する。 (2) は, 得られた α の値が場合分けの条件を満たすか確認する。 XZ- 578-> (24) 579> (3≤X<1) OX(うなったく すべてがすっ 579 23 27 (1) X<Y X<o + Œ XCL O + 0=X<3 3/5 6-2x XCO, 0≤x C1. Il f 13 + Isi なんで≦くろ、3 ではないのか ⑨ KX33Xになっています

回答募集中 回答数: 0