学年

教科

質問の種類

数学 高校生

微分法の接線の問題です。 写真2枚目の右上の「a≠0は極値をもつための条件」とありますが、なぜa=0だと極値を持つことができないのでしょうか?問題でa>0という条件がそもそもあるからだとしても、なぜわざわざa≠0と書いているのか分かりません! 教えて頂きたいです!🙇‍♂️

96 接線の本数 曲線 C:y=-x上の点をT(1,ピー1)とする。 〇 (1) 点Tにおける接線の方程式を求めよ. (2) 点A(a, b) を通る接線が2本あるとき, a, bのみたす関係式 を求めよ。ただし,a>0, b≠α-a とする. (3)(2)のとき、2本の接線が直交するようなα, bの値を求めよ。 精講 のパターン 3次関数のグラフに引ける接線の本数は,接点の個数と一致し ます、だから,(1)の接線に A(a, b) を代入してできるtの3次方 程式が異なる2つの実数解をもつ条件を考えますが,このときの 考え方は 95 注で学習済みです. 3) 未知数が2つあるので, 等式を2つ用意します。 で 1つは(2)で求めてあるので, あと1つですが,それが 「接線が直交する」 を式にしたものです。 接線の傾きは接点における微分係数(84) ですから、 2つの接点における微分係数の積 = -1 と考えて式を作ります. 解答 (1) f(x)=x-x とおくと, f'(x)=3x²-1 よって, Tにおける接線は, y-(t-t)=(3-1)(x-t) y=(3t2-1)x-2t3 (2) (1) の接線はA(a, b) を通るので 6=(3t2-1)a-213 2t-3at2+a+b=0 .....(*) (*) が異なる2つの実数解をもつので, g(t)=2t3-3at2+a + b とおくとき, y=g(t) のグラフが,極大値, 極小値をもち, (極大値)×(極小値) =0であればよい, g(t)=6t2-6at=6t(t-a) g'(t)=0 を解くと, t=0, t=α だから 186 (t,t³-t) A(a,b)) 95注 R!!

未解決 回答数: 1
数学 高校生

導関数は微分係数の集まりで合ってますか?

2 導関数 定義関数 極 値 解説 微分係数 1 ① の定義は数学Ⅱで学んだこととまったく同じ なお, 関数f(x) について, x=α における微分係数 せるとき,f(x) は x=αで微分可能であるという。 関数y=f(x) がx=αで微分可能であるとき、曲線 (定!! 点A(a, f(a))における接線が存在し、多分係数 y=f(x)の点における接線 AT (右図参照)の傾き ■ ② 関数 f(x) がx=aで微分可能ならば、x=a るの証明 lim{f(x)-f(a)}=lim xaに x-a x-a x-a { ƒ (x) − f(a) • (x− a)} = ƒ'( 近づける よって limf(x)=f(a) p.829 x-a ゆえに、f(x)はx=αで連続である。 なお, 関数 f(x) が x=αで連続であっても, f(x)は 分可能とは限らない(次ページの基本例題 60 参照) の 関数導関数 f(a)のあつまり? どの)で関数f(x)が,ある区間のすべてのxの値で微分可能 成立するよう になる!! 可能であるという。 関数f(x) がある区間で微分可能 おのおのの値α に対して微分係数f(a) を対応させる この新しい関数をもとの関数f(x) の 導関数といい hya で表す。 関数y=f(x) からその導関数f(x) を求めることを, をな また, xの増分 4x に対する y=f(x)の増分f(x+ f(x) の導関数f(x)の定義の式は次のように表される 4y f(x+4x)-f( f'(x) = lim 4x-4x →0 =lim 4x10 4x

解決済み 回答数: 1