学年

教科

質問の種類

数学 高校生

赤丸の問題を解くにあたって、なぜ右のような解き方ではダメなのか、そして解答の式にある1/5×1の×1の意味がよく分からないので教えてほしいです

白球が4個, 赤球が2個の合計6個の球が入った袋がある。 〔1〕 この袋から, 同時に3個の球を取り出す。 4 4G 2-5.2 ア 鉄を3個取り出す確率は であり、白球を2個, 赤球を1個取り出 イ 5 (2 (A J 2 ウ す確率は である。また、取り出す白球の個数の期待値は オ 個で 2 I 5 個 ある。 ①白赤を取り出す確率は 46×2(2 確率 1/ S f 〔2〕 次の《ルールにしたがって、この袋からA,Bの二人が球を取り出す。(x1 《ルール》 ・先に球を取り出す人は,3個の球を同時に取り出し、取り出した球は戻さない。 次に球を取り出す人は、2個の球を同時に取り出す。 . 二人のうち、白球を多く取り出した人を勝ち、もう一方を負けとし、二人の 取り出した白球が同数の場合は引き分けとする。 《ルール》にしたがって球を取り出し、勝ち負けが決まるか引き分けになった 後にすべての球を袋に戻す操作を「セット」と呼ぶことにする。 また, 球を取り 出す順は,1セット目はAが先とする。 「セット」を続けて行う場合は、2セッ ト目はBが先とし, 3セット目はAが先とする。 SMA (1)1セット目を行う。 #A 19 2 ЯA 引き分けになるのは,A,Bともに白球を 個取り出したときであり が自己赤 赤 キ が X1 その確率は ケ 27 ク *5 である。 また,Bが勝つ確率は か勝つのは、 であり,Aが脂 コ 5 9zj サ 白系 確率は である。 b ↓ シ 上のもよりこのとき、Aが球を 取り出した後の袋には自己、赤のがあるので

解決済み 回答数: 1
数学 高校生

ウの問題で二つ目の場合分けで=入ってるのが意味わからないです。

22次不等式/不等式を解く (ア) 連立不等式 2x2-x-3<0, 3.2+2x-8>0を解け ○ 8 (イ) 不等式・ x-3 <x+4 を解け X (ウ)についての不等式2+3æ-5≧x+3|を解け.X 2次不等式はグラフを補助に 4/9 ( 摂南大法) (宮崎産業経営大) 2次不等式を解くとき, グラフを補助にすると分かりやすい. ax+bx+c=0(a>0)を考えてみよう.y=ax2+bx+cのグラフと軸 との共有点のx座標がα, β (α <B)であれば右のようになり, >0となる範囲は, x<α または β< である.α,Bはy=0の解,つまり ax2+bx+c=0の2解である. まとめると y=ax2+bx+c y > 0 上の場合, ax2+bx+c=a(x-a)(x-β) と因数分解 される.a>0のとき,ax2+bx+c>0⇔ (x-α)(x-B)>0 で、この解は,「x <a, B<x」 (a,βの外側)となる。 ( 大阪歯大) /y>0 a B x y < 0 分数不等式 一方,y<0, つまり (x-a)(x-B) <0の解は, 「α<x<B」 (α,βの間)となる. 分母をはらえばよいが, 分母の符号で場合分けが必要である. 絶対値がらみ グラフを描いて考えるのがよいだろう. (p.20) 解答豐 2x2-x-3<0 ∫(x+1) (2x-3)<0 (ア) 32+2x-8>0 (x+2)(3-4)>0 3 4 ; -1<x< 2 <x」 かつ 「x-2または 3 .. 3 2 (イ) 1°æ-3>0のとき, 両辺にx-3を掛けて, 8<(x+4)(x-3) :.x'+x-20> 0 .. (x+5)(x-4) > 0 x-3>0とから, x>4 -2 -1 43 32 x<-5 または 4<x このような問題では分母≠0 (本 間ではx-3≠0) を前提とする. 2°x-30 のとき,両辺にx-3を掛けると1°と不等号の向きが逆になる. (5)(4)<0により-5<x<4であり, x-3<0とから,-5<x<3 1,2°により,答えは,x>4 または-5<x<3 (ウ)まず,y=x2+3x-5 とy=|x+3| の交点の座標を求める. 1°x≧-3のとき,x2+3x-5=x+3 x'+2x-8=0 ∴ (x+4)(x-2)=0 -3を満たす解を求めて, x=2 2°x-3のとき,x2+3x-5=-(x+3) :: x²+4x-2=0 I-3を満たす解を求めて x=-2-√6 よって、右図のようになるから、求める範囲は 2-6 または2≦x y=x2+3x-5 y y=x+3| -3 0 2 x -2-√6 x2+3x-5=|x+3|を解く. グラフを描くので,1の(ア)で 使った方法よりも, 絶対値の中身 の符号で場合分けした方がよい. y=x2+3x-5がy=|x+3|の上 側にある範囲を求めればよい.

解決済み 回答数: 1
数学 高校生

次の青線の移行がよくわからないのですがどなたか解説お願いします🙇‍♂️

(1)im/([1]+[1]) を求めよ。 ただし, [x] は x を超えない最大の整 数を表すものとする。 2" ≤2. n! n-2 2" (2)3以上の自然数nに対して 2-(2) を示し, lim を求めよ。 ガウス記号 [x]や階乗n! を含み, 直接考えにくい。 non! Action》 直接求めにくい極限値は、はさみうちの原理を用いよ 風のプロセス (1)(+6) |をつくりたい。 定義に戻る ・極限値が一致する 2式 (2)逆向きに考える 結論 2.2.2.2 1・2・3・4・・ 個 ..... 個 2.2 (n-1)n [x]≦x<[x]+1 より n-1個 x-1<[x]≦x 2・2・2・・・・・2・2 を示せばよい。 3・3·····3・3 n-2個 3・4・・...(n-1)n ≧3・3・・・・・3・3 を示せばよい。 解 (1) x-1<[x] ≦ x であるから [x]の定義より [x]≦x<[x]+1 ①+② より 5 n- ·2< <[4] + [1/8] n 1< 2 [#] n n n n .. 1, 1< 2 3 ① ② の辺々を加えて, その辺々をn (0) で割ると 5 2 17 > n n 1/([1] n n + ]) ≤ 5 6 5 2 ここで, lim = n→∞ 6 n 5 6 であるから, はさみうちの n n 原理より lim (2)n≧3のとき + = n→∞ n 2 3 n-2個 2" 2・2・2・2・・・・ n! 1・2・3・4・ 2" n-2 2 題 ¥7 よって 0 < 2. n! 2 n-2 n-2 2・2 2・2・ 1.2 3.3 =2· ここで, lim2.(1/2) VII 5-6 n n-2個 3・4・・・n≧3・3・・・3 より 2・2・・・2 2・2・・・2 3・4・・・n 3・3・・・3 = 0 であるから, はさみうちの |r| <1のとき limy"0 1-80 2" 原理より lim = 0 non!

解決済み 回答数: 1