学年

教科

質問の種類

数学 高校生

整数問題について 題意は互いに素を利用するとの事ですが、 自力で解いたやり方ではm.lを用いて条件から立式し、n+9を無理やり変形して24(m+l)という形で証明しました。 私の証明方法も正しいですか?

基本 (1) n 例題 120 互いに素に関する証明問題(1) 00000 は自然数とする。 n+3は6の倍数であり,n+1は8の倍数であるとき, n+9は24の倍数であることを証明せよ。 (2)任意の自然数nに対して、連続する2つの自然数nn+1は互いに素で あることを証明せよ。 針 /p.525 基本事項 2 重要 122 (1)を用いて証明しようとしても見通しが立たない。 例題 110 のように,n+1, n+9 がそれぞれ8, 24の倍数であることを、別々の文字を用いて表し, n を消去す る。そして, nの代わりに用いた文字に関する条件を考える。 次のことを利用。 a, 6は互いに素で, akが6の倍数であるならば, kはの倍数である。......★ (2)nn+1は互いに素⇔nとn+1の最大公約数は nとn+1の最大公約数をg とすると (a, b, は整数) n=ga, n+1=gb (a,bは互いに素) この2つの式からnを消去してg=1 を導き出す。 ポイントは A,Bが自然数のとき, AB=1 ならば A=B=1 CHART 11 ak=blならばんはの倍数 7αの倍数 a,bは 互いに素 2 αと6の最大公約数は1 (1) n+3=6k. n+1=81(k, lは自然数) と表される。 参考 (1) n+9は,6 答 n+9=(n+3)+6=6k+6=6(k+1) n+9=(n+1)+8=8l+8=8(+1) よって 6(k+1)=8(1+1) すなわち 3(k+1)=4(+1) 3と4は互いに素であるから, k+1は4の倍数である。 したがって, k+1=4m (mは自然数) と表される。 したがって,n+9は24の倍数である。 ゆえに n+9=6(k+1)=6.4m=24m 数かつ8の倍数である ら,6と8の最小公倍 である24の倍数と て示してもよい。 <指針 ★ の方 なお、「3と4は互い 素」は重要で,この がないと使えない。 では必ず書くように

解決済み 回答数: 2
数学 高校生

❓マークがついているところで、 2b-aとgが〜から、g=1になるところがわかりません。 教えてください。

第4問 整数の性質 【解説】 (1) P 27+31 2n+1 (2n+1)+30_ 2n+1 + 30 2n+1 Pが整数となるのは, 2n+1 が30の約数のときであるから, 2n+1 (nは正の整数) が3以上の奇数であることを考慮すると、 2n+1=3,5, 15. ②x2- 2n+2=26g - 2n+1= ag 22m²+78m+56 R= (n+m)(2n+1) nmは整数であるから,Rが整数のとき、 Q-(n+m)R このときの値は(3)より, も数である よって、 1 = (26-a)g なる。 であり,それぞれのの値に対して, Rの頃は次の表のように 1,2,4,7,22 n= 1 1 n 1 2 4 7 22 (2) 2n+1 a b を用いて、 +1 は、 最大公約数および互いに素な正の整数 とすことができる。 ②x2-(より, [2n+1=0. n+1=bg 2 b-ag= 2b-a とgはともに整数であり, g≧1 であるから, 52 60 R 80 112 276 m+1 m+2 m-+-4 m+7m+22 ... a また, n=1,2,4,7,22のそれぞれの額に対して,m=0 の ときのRの値は次の2のようになる。 2 n 1 2 47 22 R 52 30 20 16° 138 11 g= 2③ したがって,m=0 のとき,Rがとり得る異なる整数値の総和 は、 (3) 22m²+78n+56=(n+1 (22n+56 56-11=45 =(n+1){11(2n+1)+ 45 52+30 +20 +16 118 以下,60 とする. n=1のとき, m +1≧61 より より, 22m² +78n+56 Q= 2n+1 2ntlentli 互いに素だから 割りきれない. (n+1)(11(2n+1)+45} 2n+1 (+1)(1+ 45 2 2n+1 2n+1 =11(n+1)+45(n+1) ここで, (2) より 2n+1 と n+1 の最大公約数は1, すなわち, 21n+1 は互いに素であるから, Qが整数となるのは, 2n+1 が45の約数のときである。 2n+1 が3以上の奇数である ことを考慮すると, すなわち 2n+1=3,5, 9, 15, 45 n=1, 2, 4, 7, 22. よって, Qが整数となるの値は全部で5 個ある。 m+1 <l すなわち <R<1 であるから, Rは整数ではない、 n=2のとき,m+262 より 0<- m+2 であるから, Rは整数ではない. くすなわちくR<1 n4のとき、 80 m+4 が整数となるのは、+4 が 80 の約 のときである+464であることを慮すると、 m+480 すなわちm=76. 7のとき、が整数となるのは、+7 が112の約 数のときである。 767 であることを考慮すると、 m m+7=112 すなわちm=105. n=22 のとき,mmが整数となるのは、+22276(火 約数のときである、+222であることを考慮すると、 -26- -27-

解決済み 回答数: 1