学年

教科

質問の種類

数学 高校生

(3)を解いてみましたが、答えが違いました。どこで間違えたのでしょうか。 また、(-2/3)^(n-1)の場合、マイナスは偶数乗か奇数乗かが固定されていないと、括弧の外に出せないという考え方であっていますか?

10 和と一般項の関係, 3 項間漸化式 - 数列{an}が, a=-1,22ar=3an+1-24-1 (n=1, 2, 3, ...)を満たすとき, (1) az を求めよ. (2) 3an+2-70n+1+20m=0を示せ. (3) am を求めよ. an=S-S1 (山形大工/一部省略) S” を含む漸化式は, 「an=S-S-1 (n≧2)」......☆を用いて, S を消去し,4 だけの漸化式に直す. ☆は一般にはn≧2のときのみに通用することに注意 (n=1 とするとn-1=0 になってしまう!). n=1のときは, α = S」 を用いる。 an+2+pan+1+gan=0 an+2+pan+1+ga=0の一般項を求めるには,r' + pr+g=0の解α,βを 用いる. 解と係数の関係より, か=-(a+β), q=aB. よって, an+2-(a+β)an+1+αBa=0. これを an+2-αan+1=B(an+1-αan), an+2-Ban+1=α (an+1-Ba) と変形する. α=βのときは,an+2-αan+1=α (an+1-αan)より, an+1-4a=an-1 (a2-aa)として, an+1=αan+san-1 (s=az-aa1). これをα+1で割り, bn=alα" とおくと {bm} は等差数列になる. 解答 Sn=ax とおくと,2S=3an+1-24-1 (1) ① n=1 とすると, 2S1=3a2-241-1 S=q=-1だから, -2=3a2+2-1 ∴. a2=-1 (2) ①のnをn +1 にすると, 2Sn+1=3an+2-2an+1-1 ②-①より, 20+1=34n+2-34n+1-2an+1 +2an :.34n+2-7an+1+2an=0 (3) (2)より, an+2 7 2 13an+1+1/30m=0 [右の傍注に注意し] ③を変形して 1 an+2-24n+1=1/22 (an+1-2an) ④, an+2 (ant1-20),ant2-1/30nt1-2 (0mts-1230円) \1 1\n-1 an+1- ←S+1-Sn=an+1 7 ③ rr+ x+2=0の解 --- 3 (2) (11/23)により ....5 1 x=2. 3 ⑥④より{an+1-2cm} は公比 1/3 の 等比数列. 2-1 ...... 7 a-(—)" (az−2a1) = ( )" (−1+2)=(3)- =(1/1) 3 ④より, an+1-2an= ⑤より, an+1一 an=2n-1 a2 12-130-20-(02/24)-20-1(-1+1/3)-(-/3/3) 2 =2" よって, 3 n-1 ・2"-1- 10 演習題 (解答は p.76) 2Sn2 数列{a} は,q=1, an= (n=2, 3, 4, ...) を満たす. 2Sn+1 ただし, Sn=a+az+... +an である. (1)a2 を求めよ. (2) SS-1 を用いて表せ. (3) S (2) 前文に反しか らを消去する. C (芝浦工大) (3) 11を参照。

回答募集中 回答数: 0
数学 高校生

2番の式が全体的に良くわかんないんですけど教えてくださいませんか?

第4 58 直線の傾きと (1) 軸の正方向と 75° をなす直線の傾きを求めよ. (2) 2直線y=0 (z軸) と y=2.x のなす角を2等分する直線の 精講 うち,第1象限を通るものを求めよ. (1)直線の傾きと,直線がx軸の正方向となす角の間には m=tan0 の関係があります。とても大切な関係式ですが、相 はこれだけでは答えがでてきません. それは tan75° の値を知ら ないからです.しかし, sin 75° や cos 75° ならば, 75° = 45° + 30°と考えれば 54の加法定理が使えます. だから,ここでは tangent の加法定理(ポイント を利用します. (2) 求める直線を y=mx, m=tan とおいて, 図をかくと, tan20=2 をみ たす m(または tanf) を求めればよいことがわかります。このとき、2倍 公式 (ポイント)が必要です. 解答 (1) 求める傾きは tan 75° tan 75°= tan 45° + tan 30° 1-tan 45°tan 30° 1 + tan 30° tan (a+β) tan +tanβ 1-tana tanẞ 1-tan 30° 1-1x59 =45°~B=30 1+ を代入 √3 √3+1 1 -=2+√3 1-- √3-1 √3 注 75°=120°-45°と考えることもできます。 (2)求める直線 y=mx, この直線がx軸の正方 向となす角を0とすると y y=2x =mx ゆえに, m=1-m² ∴.m²+m-1=0 m0 だから =1+√5 m=- 2 √5-1 よって, y= IC 2 (別解) A(1,0),B(1,m), C(1,2) とおくと, y=mxは∠AOCを2等分するので OA: OC=AB BC が成りたつ. .. 1:√5=m:(2-m) よって, m=- ポイント 2 √5-1 2 √5+1 <加法定理> 95 AE 03 第1象限を通るから I A53 (√5+1)=2「角の2等分線の 性質」 tana±tanẞ ・tan (α±β)= < 2倍角の公式> tan 20= 1 + tantan B (複号同順) 2 tan 0 1-tan20 <半角の公式> tan2 1-cos 2 1+cos 0 これらの公式はすべて, tan = Sing の関係と, sin, cos の加法定理、 COS O 2倍角の公式から導かれます. =2 B 演習問題 58 A (0<e<. m>0) tan20=2 2 tan 0 1-tan20 直線 y=x と y=2.x のなす角を2等分する直線y=mz (m> 0) を求めよ.

回答募集中 回答数: 0