学年

教科

質問の種類

数学 高校生

図形と漸化式の範囲です。 やり方がわからないので教えて欲しいです。

図形と漸化式 (1) 本例題 35 「上の円は同一の点では交わらない。これらの円は平面をいくつの部分に分け 平面上にn個の円があって, それらのどの2個の円も互いに交わり、3個以 00000 るか。 & THINKING CHART 漸化式を作成し, 解く問題 (求める個数を αとする) 1 ai, a α3, ・・・・・・を調べる (具体例で考える) 2 an ① まず, n=1, 2, 3 の場合について図をかくと、 下のようになる。 この図を参考に、 2 平面の部分は何個増加するだろうか? n=2 とみ+1の関係を考える (漸化式を作成)・ n=1 an+1 を anとnの式で表した漸化式を作ろう。 円を1個追加すると、 ① 平面の部分は+2 (交点も+2 ) ゆえに n=3 Tran ① 5 (2) 平面の部分は +4 (交点も+4) n個の円によって平面が個に分けられるとすると」=2 平面上に条件を満たすn個の円があるとき,更に,条件を満 たす円を1個追加すると, n個の円とおのおの2点で交わる から交点が2個できる。 この2n個の交点で,追加した円 がn個の弧に分割される。これらの弧によって, その弧が 含まれる平面の部分が2分割されるから,平面の部分は 2n 個だけ増加する。 よって an+1=an+2n よって, n ≧2のとき an+1=an=2n an=a₁ + Z2k=2+2• 1² (n−1)n=n²_n+2 k=1 =2であるから, この式はn=1のときにも成り立つ。 したがって, n個の円は平面を (n²-n+2) 個の部分に分ける。 • RACTICE 35 ⑧⑨ 6 3 ⑦ 4 基本 29 ① 分割された弧の数と同じだ け平面の部分が増える。 403 ② 1歳 4 新化式 階差数列の一般項が2n n=1 とすると 1²-1+2=2 n≧2 とする。 平面上にn個の円があって,それらのどの2個の円も互いに交わり, ENE 3個以上の円は同一の点では交わらない。これらの円によって,交点はいくつできる

回答募集中 回答数: 0
数学 高校生

セ、ソについて、私は2枚目の右側に書いてある様に考え、円の斜線部分が答えになると思ったのですがなぜ答えと異なってしまうのか教えて下さい!因みに答えは6、7で合ってます。

数学ⅡⅠ 数学 B 第1問 (必答問題) (配点 30) [1] 0 を実数とする。 x の方程式 4x³-3x+sin 30=0 を考える。 (注)この科目には、選択問題があります。 (23ページ参照。) て であることと, sin (20+0) = エ と表せる。 2 sin20= ア sin Acos 0, sin30= I の解答群 となる。 ⑩sin 20 cos0 + cos 20sin0 ② sin 20cos0-cos 20 sin0 したがって ① は オsino- x = sin0, -sint サ cos 20 = 1 sin e であることから, sin30 は sin0を用い sin³0 4x-3x+3sing-45m² (x-sind){4x2+キ (sine)x+ 7sin¹0- ) 12x2sing と変形でき, ① の解を0を用いて表すと コ - ① cos 26cos8+ sin 20sin0 ③ cos 26cose-sin 20sin0 cos o 2 ウ -25inA ± √ 45i ²0- 4 (4 sia-3), =0 4ズーラ(+sing(3-4sin日) 1 - 3+45in 4 (数学ⅡI・数学B 第1問は次ページに続く。) -sing± sine-4sinto +3 42 (4x - 3+45in²0) -sino 510(1-4 -3sin' +3 (1-sin A A A - sin0+ f(0) = sing 4 コ cos 4 g(0)= サス とすると, y=f(8) のグラフの概形はシ y=g(8) のグラフの概形は カスであるら 1 - sine- 0 -3 4sine 4sin' 45ina 45ino-3 3sing-45in' -3 sine +45in 数学ⅡI・数学B = cos y N N in in A O x については,最も適当なものを,次の⑩~⑤のうちから一 つずつ選べ。 ただし, 同じものを繰り返し選んでもよい。 サス -0 (数学ⅡⅠ・数学B 第1問は次ページに続く。)

回答募集中 回答数: 0