学年

教科

質問の種類

数学 高校生

training 82の(2) xの変域が1からaまでなのがなぜかわかりません。 3≦a<5だからx=aで最小値を取り、x=3で最大値を取るのではないですか?

市の1辺をxとする。 号がついた形で最小 用する。 辺の長さ 辺の長さは正の数。 X 34 (0<x<10) 断り書きが重要! 10-1 y=x21 √a √b 最大 x=0 次関数の最大値・最小値(3) 82 定義域の一端が動く ①①①] がxsa である関数f(x)=(x-2)の最大値および最小値を、次の 場合について求めよ。 ただし は正の定数とする。 (2) 2=a<4 (3) a-4 (1) 0<a<2 CHART ● GUIDE Oxα は,αの値によって変わってく ・最大値・最小値が変わる。 関数 y=f(x)のグラフをかく。 簡単な図でよい。 グラフの軸や頂点と定義域の位置関係に注目 における最大値・最小値をグラフから読みとる。 しながら, それぞれのαの範囲に応じた定義域 の変域が動き, グラフが固定された関数の最大最小 グラフの軸や頂点との変域の位置関係が重要 点(2,0), 軸は直線 x=2である。 関数 y=f(x)のグラフは下に凸の放物線で、頂点は (I) 0<a<2のとき f(0)=4, f(a)=(a-2) 2 よって (2) 2≦a < 4 のとき f(2)=0 よって (3) α=4 のとき よって (4) 4 <α のとき よって [軸 lx=2 x=0, ・最小 x=0 で最大値 4, x=α で最小値 (a−2)² グラフは図[2] のようになる。 x=0 で最大値 4, x=2で最小値 0 グラフは図[3] のようになる。 4で最大値 4, x=2で最小値 0 グラフは図[4] のようになる。 x=α で最大値 (a−2)2, x=2で最小値 0 [3] [2] x=a グラフは図[1] のようになる。 最大 x=01 軸 x=2 最小 x=0x=a x=a |x=4 最大 -- x=0 軸 x=2| 最小 [最大] x=4 (4) 4<a の右端 が動く x-0 例えば、αの値を (1) 1 (2) 3 (3) 4 (4) 5 としてグラフを かいてみる。 (1) 軸が定義域の 右外 (2) 軸が定義域内の 右寄り (3) 軸が定義域の 中央 (4) 軸が定義域内の 左寄り x 0 足 x 軸, y 軸を省略して グラフをかくと見やすい。 [4] 軸 x=2 [最大 TRAINING 82 3 定義域が 1≦x≦a である関数f(x)=-(x-3)2 の最大値および最小値を,次の各場 合について求めよ。 ただし,α は α 1 を満たす定数とする。 (1) 1<a<3 (2) 3≦a<5 (3) a=5 (4) 5<a 介 Sofes <カ こちら 01 こちらから WENG

未解決 回答数: 0
数学 高校生

赤線部のようになるのが分からないので教えて頂きたいです!

7 交 30 場合の数と確率 11 場合の数 (1), 例題 11 倍数の個数 6個の数字 0, 1, 2 3 4 5 の中から異なる3個の数字を取り出して, (百の位は 0とはならないように)3桁の整数をつくる。次の3桁の整数は何個できるか。 (1) 321より大きい整数 (2) 2の倍数 (3) 5の倍数 (4) 3の倍数 [13 青山学院大・改 解法へのアプローチ (2)2の倍数は一の位が偶数である。 (4) 3の倍数は,各位の数の和が3の倍数となる。 5の倍数は一の位が0か5である。 (3) e 63 をB, (1) (2) 解答 (1) 百の位が3, 十の位が2の場合, 324, 325 のみで2個。 百の位が 3, 十の位が5の場合 4C1=4 (個) 百の位が3, 十の位が4の場合 4C1=4 (個) 百の位が4の場合 5P2=20(個) 百の位が5の場合 5P2=20(個) よって, 321より大きい整数は 2+4+4+20+20=50(個) (2) 2の倍数は一の位の数字が 0 一の位が0の場合 5P2=20(個) 2 4のものである。 CHOOS 一の位が2の場合 5P2個から 012,032,042,052 を引いて 20-4=16(個) 一の位が4の場合、一の位が2の場合と同様に16個 よって、2の倍数は 20+16×2=52 (個) (3) 5の倍数は一の位の数字が0.5 のものである。自闘を請求 第一の位が0の場合、20個 一の位が5の場合, (2) と同様に考えて 5P2-4=16 (個) 1845 よって, 5の倍数は 20+16=36 (個) (4)3の倍数は各位の数字の和が3の倍数のものである。 0から5までの3つの数字の中で,和が3 の倍数となるものは 0 を含むものは, {0, 1,2}, {0, 1,5}, {0, 2, 4}, {0, 4,5} 0を含まないものは, {1, 2,3},{1, 3,5}, {2, 3,4}, {3, 4, 5} だけある。 例えば, 0, 1,2の場合, できる整数は 3P3-2個 1,2,3の場合、できる整数は 3P 3個であるから, 3の倍数は (3P3-2) ×4+3P3×4=40 (個) 13041 64 ある AHSIN MYIN (2) 5の倍数 (4) 4500より大きく 8500より小さい整数 ★65 (1) (2) ★60 類題にChallenge ★62 5個の数字 0, 2,4, 68 から異なる4個を並べて4桁の整数をつくる。次 の整数は何個できるか。 (1) 4桁の整数 (3)3の倍数 [13 駒澤大] Jr う (1 (2 €

回答募集中 回答数: 0