学年

教科

質問の種類

数学 高校生

帝京大学2024年度総合型選抜の過去問です。 誰かに解説して頂きたいです。

数学(総合) 経済・法・文・外国語・教育・医療技術・福岡医療技術学部 01-04-20 (1) (1) 6x + 13xy +6y-16x-9y-6= ア x+ イ ウエ x+ オ Ly+ 〔3〕 △ABCについて, sin A sin B sin C √7 が成り立っている。このとき. ア cos C= である。またこの△ABCの面積が1/3であるとき イ AB= ウ (2)実数a, b は,a-b=8,ab=4を満たす。 んだ とすると, (△BCD の面積) (△ACDの面積) I である。 さらに, ∠BCAの2等分線と線分AB との交点をD オ 3であり. このとき,+b= キクである。また,'+6= ケ コ である。 AD = カ キ CD = ク ケ である。 (3) x+yv3=2+√3 を満たす有理数x,yは,x= x+√3 サシ . y= スセである。 he a (3) 2. [2] (1)αを定数とする。 xの2次関数y=x-4ax-a+10q...... ① がある。 (i) ① のグラフは,a = ア のとき, 点 (1,10) を通る。 (ii) ①のグラフの頂点のy座標をm (a) とするとき m (a) カ である。 表される。 m (a) の最大値は イウ + エオα と 〔4〕 e ウ (1) 2次方程式 5x +28x-12=0の解は,アイ である。 I (2) αを定数とする。 - 8x +15≦0を満たすすべてのxが, 不等式x+ax +7≦0を オカキ 満たすときのとり得る値の範囲は, a≦ ク である。 (2)2辺がxとyの長方形の周の長さは20, 面積は16以上24以下である(ただし, ク である。 xyとする)。この長方形のxの範囲は, キ ≤ x ≤ (3) αを定数とする。 xの2次方程式(x+1)+α(x+2)+15=0が重解をもつαの値は, <サシとする。 サシである。ただし,ケコ ケコ VIDOR © NEWED 20 9月の スゲールは

未解決 回答数: 0
数学 高校生

整数の問題なのですが-2,-p^2の組み合わせは存在しないのでしょうか...?理由を教えて頂きたいです。

数学 A415 EX 設 @100 2 x,yを正の整数とする。 (1) 2 +1 xy 1 2024 4 を満たす組 (x, y) をすべて求めよ。 4/7 (2)3以上の素数とする。 (1) + x (x, y) を求めよ。 x 2+2 y Þ を満たす組 (x, y) のうち, x+y を最小にする [類 名古屋大 ] 1 1 から y 4 8y+4x=xy ゆえに よって xy-4x-8y=0 (x-8)(y-4)=32 ① xyは正の整数であるから, x-8, y-4 は整数である。 また,x≧1, y≧1であるから ゆえに、 ①から x-8≧-7, y-4≧-3 よって (x-8, y-4)=(1, 32), (2, 16), (4, 8), (8, 4), (16, 2), (32, 1) 2 1 1 (2) + x y p から 2py+px=xy ゆえに (x, y)=(9, 36), (10, 20), (12, 12), (16, 8), (24, 6), (40, 5) ←両辺に 4xy を掛ける。 ←xy+ax+by for =(x+b)(y+α) -ab (D) ←x>0, y>0 としても よい。 ←練習143の検討のよう な表をかいてもよい。 ←両辺に pxy を掛ける。 xy-px-2py=0 よって (x-2p)(y-p)=2p² ① x, y は正の整数, pは素数であるから,x-2py は整数で ある。また,x≧1, y≧1であるから x-2p≧1-2py-p-p ...... (2) 3以上の素数であるから, 22 の正の約数は 1, 2, p, 2p, p², 2p² ←素数の正の約数は とだけである。 ゆえに、 ①,②を満たす整数x-2p, y-pの組と,そのときのレー x, y, x+yの値は,次の表のようになる。 x-2p 1 2 p2p p² 2p² 書き出 2p2 p² 2p p 2 1 地道 XC 2p+1 2p+2 3p 4p p²+2p 2p²+2p 計算 y 2p²+p p²+p 3p 2p p+2 p+1 2p²+3p+1 x+y 2p2+3p+1 p²+3p+2 6p 6p p²+3p+2 ここで, p≧3であるからしぼりこみ よって (2p+3p+1)-(p²+3p+2)= p²-1>0 (p²+3p+2)-6p=p²−3p+2=(p−1)(p-2)>0 2p°+3p+1>p+3p+2>6p (x, y)=(3p, 3p), (4p, 2p) 表より, x+y=pのとき すなわち, x+yを最小にする (x, y) は (x, y)=(3p, 3p), (4p, 2p) y-pがともに負となることはない。 とすると ← に適当な値を代 て,大小の目安をつ とよい。 例えば,p= 代入すると |2p2+3p+1=28, p2+3p+2=20,6 よって, 2p2+3p+ >p²+3p+2>6p ではないかと予想 3から

解決済み 回答数: 1