学年

教科

質問の種類

数学 高校生

(2)でピンクの丸で囲ってある数字はどうやって出すんでしょうか?y=0でxの3次式で解く以外ありますか?教えてください!

基本 例題 210 3次関数のグラフ 次の関数のグラフをかけ。 (1) y=-x+6x2-9x+2 (2) y=1/2x+ x+x2+x+3 基本 209 重要 215 指針 3次関数のグラフのかき方 ① 前ページと同様に, y = 0 となるxの値を求め, 増減表を作る(増減, 極値を調べ る)。 2 グラフと座標軸との共有点の座標をわかる範囲で調べ,増減表をもとにグラフを かく。 表にして x軸との共有点のx座標: y=0としたときの, 方程式の解。 軸との共有点のy座標 : x=0としたときの, yの値。 CHART グラフの概形 増減表をもとにしてかく (1) y'=-3x2+12x-9 答 =-3(x²-4x+3) =-3(x-1)(x-3) y=0 とすると x=1,3 yの増減表は次のようになる。 3C 1 3 0 + 0 |極小 |極大| y -2 7 2 Ay 2 よって, グラフは右上の図のようになる。 (2) y'=x2+2x+1 =(x+1)2 y'=0 とすると x=-1 yの増減表は次のようになる。 x -1 23 x y 3 83 y' + 0 + 8 y 3 -3 -10 X ゆえに、常に単調に増加する。 よって, グラフは右上の図のようになる。 (1) x軸との共有点のx座 標は,y=0 として x3-6x2+9x-2=0 .:. (x-2)(x-4x+1)= 0 これから x=2 y軸との共有点のy座標 は,x=0 として y=2 (2)x軸との共有点のx座 標は,y=0 として両辺 を3倍すると x3+3x2+3x+9=0 (x+3)(x2+3)=0 よって x=-3 軸との共有点のy座標 は, x=0 として y=3 晶検討 (2)で,x=1のときy=0 であるが, 極値はとらない。 なお,グラフ上のx座標が -1である点における接線 の傾きは0である。

解決済み 回答数: 1
数学 高校生

(2)の解説の3行目からがわかりません。多分2枚目の写真の知識を使うのですがこの説明も理解できないです。

26 剰余の定理 (III) (I) Mes -2a-2b+26=6 -2a-b+26=14 (1) 整式 P(z) をπ-1,-2,エー3でわったときの余りが、そ れぞれ 6,1426 であるとき,P(z) を (x-1)(x-2)(x-3) で わったときの余りを求めよ. (2) 整式P(z) を (x-1)でわると、2x-1余り,r-2 でわると 5余るとき,P(x) を (x-1)(x-2)でわった余りを求めよ. 講 (1) 25 で考えたように,余りはax2+bx+c とおけます. あとは, a,b,c に関する連立方程式を作れば終わりです. しかし, 3文字の連立方程式は解くのがそれなりにたいへんです. こで,25 の考え方を利用すると負担が軽くなります。 余りをax2+bx+c とおいても P (1) P(2) しかないので, 未知数3つ (エノ 式2つの形になり, 答はでてきません. . a+b-10=0 l2a+b-12=0 ∴.a=2,b=8 よって, R(x)=(2x+8)(x-3)+26 =2x2+2x+2 注 (別解)のポイントの部分は,P(3) R (3) となることからもわ かります. (2) P(x) を (x-1)(x-2) でわった余りをR (z) (2次以下の整式)と おくと,P(x)=(x-1)(x-2)Q(x) +R(x) と表せる. 余 ところが,P(x) は (x-1)2 でわると2x-1余るので,R(z) も (x-1)2でわると2x-1余る. よって, R(x)=a(x-1)2+2x-1 とおける. :.P(x)=(x-1)(x-2)Q(z)+α(x-1)2+2x-1 P(2) = 5 だから, α+3=5 a=2 よって, 求める余りは, 2(x-1)'+2x-1 すなわち, 2x²-2x+1 解 答 (1) 求める余りはax+bx+c とおけるので, 3次式でわった余り P(x)=(x-1)(x-2)(x-3)Q(x)+ax2+bx+c は2次以下 と表せる. P(1)=6, P(2)=14,P(3)=26だから, ポイント f(x)をg(x)h(x) でわったときの余りをR(z) とす ると [a+b+c=6 4a+26+c=14 ......① ② 9a+3b+c=26 ...... ③ ① ② ③ より, a=2, 6=2,c=2 よって, 求める余りは2x2+2x+2 注 連立方程式を作る 25 の考え方を利用すると,次のような解答ができます。 (別解) P(x)=(x-1)(x-2)(x-3)Q(z)+R(z) P(x)はx-3でわると26余るので R(x) もx-3でわると26余る. (R(x)は2次以下の整式) ポイント よって, R(x)=(ax+b)(x-3) +26 とおける.ax+bx-3で P(1)=6,P(2)=14 より,R(1)=6,R(2)=14 わったときの商 演習問題 26 f(x)をg(x) でわった余りと R(x)をg(x) でわった余りは等しい (h(x) についても同様のことがいえる) (1) 整式P(x) をx+1, x-1, x+2でわると, それぞれ3, 7,4余 このとき,整式P(x) を (x+1)(x-1)(x+2) でわったときの りを求めよ. (2) 整式P(x) を (x+1)2でわった余りが2x+1, r-1でわった

解決済み 回答数: 1
数学 高校生

この赤線の部分なんでわざわざP(x)の式に戻しているんですか?R(2)=5っていうのが分かるんだから、R(x)=a(x-1)²+2x-1に入れればいいと思うんですけど 何か違うんですか?

44 第2章 26 剰余の定理 (III) (1) 整式P(x) を x-1, x-2, x-3でわったときの余りが,そ れぞれ6, 14, 26 であるとき, P(x) を (x-1)(x-2)(x-3)で わったときの余りを求めよ. (2)整式 P(z) を (z-1)でわると,2x-1余り,x-2でわると 5余るとき,P(z) を (x-1)(x-2) でわった余りを求めよ。 講 (1)25で考えたように,余りはax2+bx+cとおけます.あとは、 a,b,cに関する連立方程式を作れば終わりです . しかし,3文字の連立方程式は解くのがそれなりにたいへんです。 ここで25の考え方を利用すると負担が軽くなります. 余りをax+bx+cとおいてもP(1) P(2) しかないので,未知数3つ 弐2つの形になり,答はでてきません. .. .. -2a-2b+26=6 -2a-b+26=14 a+b-10=0 2a+6-12=0 a=2,b=8 よって, R(x)=(2x+8)(x-3)+26 =2x2+2x+2 注 (別解)のポイントの部分は,P(3)=R(3) となるこ かります. (2) P(x) を (x-1)(x-2) でわった余りをR (x) (2次以 おくと, P(x)=(x-1)(x-2)Q(x)+R(x) と表せる. ところが,P(x) は (x-1)2 でわると2-1余るので, (x-1)2でわると2x-1余る. よって, R(x)=a(x-1)2+2x-1 とおける. ∴. P(x)=(x-1)(x-2)Q(x)+α(x-1)2+2c-1 P(2) =5 だから,a+3=5 a=2 よって, 求める余りは, 2(x-1)2+2x-1 すなわち, 2x²-2x+1 解答 ■ 求める余りは ax2+bx+cとおけるので, 3次式でわった余り ポイント P(x)=(x-1)(x-2)(x-3)Q(x)+ax2+bx+c は2次以下 と表せる. P(1)=6,P(2)=14,P(3) = 26 だから, [a+b+c=6 ..... …………① .....(2) ...③ 4a+26+c=14 19a+36+c=26 ① ② ③より, a=2,6=2,c=2 って、求める余りに 2x 【連立方程式を作る f(x)をg(x)h(x) でわったときの余 ると f(x)をg(x) でわった余りと R(x)をg(x) でわった余りは (h(x) についても同様のことが

解決済み 回答数: 1