学年

教科

質問の種類

数学 高校生

高一数学 不等式の証明です。 (3)です。 黄色い線を引いているところが何してるのかが分かりません。 2分の3という数字もどこからきてるのかわかりません😢 解説をお願いします🙇‍♀️

基本例題 27 不等式の証明 (差を作る) 次の不等式を証明せよ。 また,(3) の等号が成り立つのはどのようなときか。 (1) a>1,6> 1/12 のとき 2ab+1> a +26 (2) x2>4x-7 CHART & SOLUTION 大小比較差を作る A>B⇔ A-B>0/ (左辺) (右辺)の式を (3) a²+3623ab (1) 因数分解。 (2) (実数) 正の数に変形。 (3) 実数)+(実数) 2に変形。 [注意] 一般に,不等式 A≧B の証明においては,問題で要求していない限り,必ずしも等 号が成り立つ場合について書く必要はない。 解答 (1) (2ab+1)-(a+2b)=2ab+1¬a−2b =(26−1)a-(26-1) =(a-1)(26−1) ここで,a> 1,612/12 から b> a-1>0,26-1>0 よって (a-1)(26-1)>0 ゆえに2ab + 1 > a +26 (2) x2 (4x-7)=x2-4x+7 181440 =(x2-4x+4)-4+7 =(x-2)^+3> 0 よってa²+3623ab (6 p.42 基本事項 2| 3+5/5\A)=de+1 +dDVAS+be+x)= 差を作る。 a について整理して共 通因数でくくる。 等号が成り立つのは,a-1226=0 かつ b = 0,すなわち a=b=0 のときである。 よって x2>4x-7 (3) (a²+36²)-3ab=a²-3ab+ • + (³20)² - ( 230 ) ² + 36² \€ = toka 3 (= (a−26)² + 2/0 ² 20 -b 4 について平方完成する。 (x-2)^≧0,3>0 等式・不等式の日 +(a-3 b)² ≥0, 36²20 20 (実数)² + (実数) 2≧0 を利用。

解決済み 回答数: 1
数学 高校生

この写真見てください!!この写真見る限り、(a+b)の3乗になる因数分解はないということですか??右ページだと「展開の公式6を逆に利用する因数分解は次のようになる。」と書いてありますが、左ページの公式の逆バージョンは載っていないので…説明下手ですみません!どなたか答えていた... 続きを読む

20 15 10 1 22 第1章 数と式 M 発展 3次式の展開と因数分解 (a+b) を展開すると,次のようになる。 (a+b)=(a+b)(a+b) =(a²+2ab+b2) (a+b) =(a²+2ab+b²)a+ (a²+2ab+6²)6 =a³+2a²b+ab²+a²b+2ab² +6³ =a³+3a²b+3ab² +6³ よって (a-b)=a^²-3a²b+3ab²-63 したがって、次の展開の公式が成り立つ。 展開の公式 5 よって (a+b)=a+3a²b+3ab²+63 また, ① において, bを -b でおき換えると {a+(-b)}=α°+3a²(-b)+3a(-b)2+(-6) (a+b)³=a³+3a²b+3ab²+b³ (a−b)³=a³-3a²b+3ab²-b³ (1) (x+1)³= x³ +3•x²·1+3•x•1²+1³ ① =8x3-12x2y+6xy2-y3 練習次の式を展開せよ。 1 (1)(x+2)3 (3) (3a+b)3 a² + 2ab + b² x) a +b =x+3x²+3x+1 (2) (2x-y)=(2x)-3・(2x) ・y+3・2x・y²-y3 (2) (x-1)³ (4)(2x-3y)3 数学ⅡI の内容です a+2a²b+ ab² a²b+2ab²+b³ a³+3a²b+3ab²+ b³ 10 15 20 次の式の展開の結果も, 公式として利用できる。 展開の公式 6 例2 練習 2 展開の公式が成り立つことを, 左辺を展開して確かめよ。 (1)(x+1)(x-x+1)=(x+1)(x-x ・1+1²) (a+b)(a²-ab+b²)=a³ + b³ (a-b)(a^²+ab+b) = a-b 例3 練4 =x+1°=x+1 (2)(x-2y)(x+2xy+4y^)=(x-2y){x+x・2y+(2y)^} 次の式を展開せよ。 (1) (x+2)(x²-2x+4) (3) (x+3y)(x-3xy+9y2 ) 展開の公式 6 を逆に利用する因数分解は,次のようになる。 因数分解の公式 5 =x-(2y)=x-8y3 第1節 a3+b3=(a+b)(a²−ab+b²) a-b=(a-b)(a²+ab+b2) (1)x+64=x+4°=(x+4)(x-x 4+42 ) =(x+4)(x2-4x+16 ) (2) 27x3-α=(3x)-α3 練習 次の式を因数分解せよ。 (1) x-1 =(3x-a){(3x)+3x ・a+a²} =(3x-a)(9x²+3ax+α² ) 式の計算 (2) (x-3)(x²+3x+9) (4) (2x-3a)(4x²+6ax+9a²) (2) x3+27a²3 (3) x3-64 23 終 第1章 数と式 (4) 125x3-8y3

解決済み 回答数: 1