学年

教科

質問の種類

数学 高校生

ウの問題で二つ目の場合分けで=入ってるのが意味わからないです。

22次不等式/不等式を解く (ア) 連立不等式 2x2-x-3<0, 3.2+2x-8>0を解け ○ 8 (イ) 不等式・ x-3 <x+4 を解け X (ウ)についての不等式2+3æ-5≧x+3|を解け.X 2次不等式はグラフを補助に 4/9 ( 摂南大法) (宮崎産業経営大) 2次不等式を解くとき, グラフを補助にすると分かりやすい. ax+bx+c=0(a>0)を考えてみよう.y=ax2+bx+cのグラフと軸 との共有点のx座標がα, β (α <B)であれば右のようになり, >0となる範囲は, x<α または β< である.α,Bはy=0の解,つまり ax2+bx+c=0の2解である. まとめると y=ax2+bx+c y > 0 上の場合, ax2+bx+c=a(x-a)(x-β) と因数分解 される.a>0のとき,ax2+bx+c>0⇔ (x-α)(x-B)>0 で、この解は,「x <a, B<x」 (a,βの外側)となる。 ( 大阪歯大) /y>0 a B x y < 0 分数不等式 一方,y<0, つまり (x-a)(x-B) <0の解は, 「α<x<B」 (α,βの間)となる. 分母をはらえばよいが, 分母の符号で場合分けが必要である. 絶対値がらみ グラフを描いて考えるのがよいだろう. (p.20) 解答豐 2x2-x-3<0 ∫(x+1) (2x-3)<0 (ア) 32+2x-8>0 (x+2)(3-4)>0 3 4 ; -1<x< 2 <x」 かつ 「x-2または 3 .. 3 2 (イ) 1°æ-3>0のとき, 両辺にx-3を掛けて, 8<(x+4)(x-3) :.x'+x-20> 0 .. (x+5)(x-4) > 0 x-3>0とから, x>4 -2 -1 43 32 x<-5 または 4<x このような問題では分母≠0 (本 間ではx-3≠0) を前提とする. 2°x-30 のとき,両辺にx-3を掛けると1°と不等号の向きが逆になる. (5)(4)<0により-5<x<4であり, x-3<0とから,-5<x<3 1,2°により,答えは,x>4 または-5<x<3 (ウ)まず,y=x2+3x-5 とy=|x+3| の交点の座標を求める. 1°x≧-3のとき,x2+3x-5=x+3 x'+2x-8=0 ∴ (x+4)(x-2)=0 -3を満たす解を求めて, x=2 2°x-3のとき,x2+3x-5=-(x+3) :: x²+4x-2=0 I-3を満たす解を求めて x=-2-√6 よって、右図のようになるから、求める範囲は 2-6 または2≦x y=x2+3x-5 y y=x+3| -3 0 2 x -2-√6 x2+3x-5=|x+3|を解く. グラフを描くので,1の(ア)で 使った方法よりも, 絶対値の中身 の符号で場合分けした方がよい. y=x2+3x-5がy=|x+3|の上 側にある範囲を求めればよい.

解決済み 回答数: 1
数学 高校生

次の青線の移行がよくわからないのですがどなたか解説お願いします🙇‍♂️

(1)im/([1]+[1]) を求めよ。 ただし, [x] は x を超えない最大の整 数を表すものとする。 2" ≤2. n! n-2 2" (2)3以上の自然数nに対して 2-(2) を示し, lim を求めよ。 ガウス記号 [x]や階乗n! を含み, 直接考えにくい。 non! Action》 直接求めにくい極限値は、はさみうちの原理を用いよ 風のプロセス (1)(+6) |をつくりたい。 定義に戻る ・極限値が一致する 2式 (2)逆向きに考える 結論 2.2.2.2 1・2・3・4・・ 個 ..... 個 2.2 (n-1)n [x]≦x<[x]+1 より n-1個 x-1<[x]≦x 2・2・2・・・・・2・2 を示せばよい。 3・3·····3・3 n-2個 3・4・・...(n-1)n ≧3・3・・・・・3・3 を示せばよい。 解 (1) x-1<[x] ≦ x であるから [x]の定義より [x]≦x<[x]+1 ①+② より 5 n- ·2< <[4] + [1/8] n 1< 2 [#] n n n n .. 1, 1< 2 3 ① ② の辺々を加えて, その辺々をn (0) で割ると 5 2 17 > n n 1/([1] n n + ]) ≤ 5 6 5 2 ここで, lim = n→∞ 6 n 5 6 であるから, はさみうちの n n 原理より lim (2)n≧3のとき + = n→∞ n 2 3 n-2個 2" 2・2・2・2・・・・ n! 1・2・3・4・ 2" n-2 2 題 ¥7 よって 0 < 2. n! 2 n-2 n-2 2・2 2・2・ 1.2 3.3 =2· ここで, lim2.(1/2) VII 5-6 n n-2個 3・4・・・n≧3・3・・・3 より 2・2・・・2 2・2・・・2 3・4・・・n 3・3・・・3 = 0 であるから, はさみうちの |r| <1のとき limy"0 1-80 2" 原理より lim = 0 non!

解決済み 回答数: 1
数学 高校生

この問題の数列bnが等比数列となるための条件はの後の式が分かりません。どうして②の条件が 等比数列になるための条件なんですか?

0000 要 例題 47 分数形の漸化式 (2) 数列{an} が α1=4, an+1= 4an+8 an+6 で定められている。 16m= an-a an- とおく。 このとき, 数列 {bm} が等比数列となるようなα B (α>β) の値を求めよ。 (2) 数列{an} の一般項を求めよ。 本間も分数形の漸化式であるが, 誘導があるので,それに従って進めよう (1) bn+1= an+1-B an+1-a に与えられた漸化式を代入するとよい。 (2)(1)から,等比数列の問題に帰着される。 まず, 一般項6 を求める。 重要 46 485 1 出 章 ⑤種々の漸化式 ついて と変形できる 基本37 問題37 のように おき換えを利用 4an +8 辺のαを右辺 通分する。 0から。 答 (1) bn+1 an+1-B ・B an+6 = = an+1-a 4an+8 (4-β)an+8-6β a an+6 (4-a)an+8-6a_ (繁分数式) の扱い 分母, 分子に an+6を掛 8-6β an+ ( 4-B 4-B S = 4-a 8-6a ① ant 4-a けて整理する。 の分母を4-α 分 子を4-βでくくる。 ために, 数列 {bm} が等比数列となるための条件は )を断る。 から 8-6β 4-β =- -β, 8-6a 4-a D == a ② |_ ε bn = an-a an-β の右 島着。 よって,α,βは2次方程式8-6x=-x(4-x) の解であ り x2+2x-8=0を解いて x=2, -4 辺の分母分子をそれぞ れ比較。 (x-2)(x+4)=0 a>βから α=2, β=-4 (2) 4-β_ 4+4 4+4 - =4と ① ② から b+1=46 8-6β -=-β=4, 4-a 4-2 4-B 8-6α また b1= a+4 a1-2 =4 ゆえに b=44"-1=4" =-a=-2, 4-a 特性方 よって an+4 an-2 =4n ゆえに an= bn= 2(4"+2) 4"-1 an+4 an-2 (10+0 D-D D-T

解決済み 回答数: 1