学年

教科

質問の種類

数学 高校生

この問題で、OA:AD=A+B: Cとなるのはなぜでしょうか。

68 00000 重要 例題 36 三角形の内心を表す複素数 異なる3点O(0),A(α), B(β) を頂点とする △OAB の内心をP(z) とする。 このときは次の等式を満たすことを示せ。 BRONEO A ゆえに よって 指針> 三角形の内心は,3つの内角の二等分線の交点である。 AD: DB = OA: OB=α: 6 解答 OA=|α|=a, OB=||= b, AB=|β-α|=c とおく。 また,∠AOB の二等分線と辺ABの 交点をD(w) とする。 すなわち 次の 「角の二等分線の定理」 (*)を利用し, ZOの二等分 線と辺AB の交点をD(w) として,wをα, β で表す。 (*) 右の図で OD が △OAB の ∠0 の二等分線 ⇒ AD: DB = OA: OB EO A 40.1 次に,OAD において,∠Aと二等分線 AP に注目する。 以上のことは,内心の位置ベクトルを求めるときの考え方とまったく同じである。 「改訂版 チャート式基礎からの数学ⅡI + B 」 p.422 参照。 ba+aß であるから a+b Pは∠OAB の二等分線とOD の交点であるから W= 2= タミ a+b a+b+c W= Bla+lalß R$ |a|+|B|+|B-α| ...... 検討 △ABCの内ふた土 OP:PD=OA: AD=α: (a+bc) = (a + b) : c OP: OD=(a+b): (a+b+c) a+b+c |Bla+\a\B |a|+|B|+|β-al A(a) ・a a+b bata a+b a = P(z) b D(w) bB(B) ROBADA (5) bataß O 絶対値が付いたままでは扱 いにくいので, a,b,c と SALL おいた。 SKOLAGD 角の二等分線の定理。 B これより,Pは線分 OD を (a+b):cに内分する点で あるから c.0+(a+b)w a+b+cz=a+b+c としてもよい。

回答募集中 回答数: 0
数学 高校生

赤線のところは何故こうなるのですか 異なる6個、3個ってどのことですか?

350 重要 例題 35 数字の順列 (数の大小関係が条件) α, α5) の個数を求めよ。 (2) 0≤a₁ ≤a₂≤a3 ≤a₁ ≤as≤3 次の条件を満たす整数の組(a1,a2,a3, (1) 0<a₁<a₂<a<a₁<as<9 (3) aitaztastastas≦3, a;≧0(i=1,2,3,4,5) 指針 (1) ar, a2, ......, as はすべて異なるから, 1, 2, , 8の8個の数字から異なる を選び, 小さい順に α1, Q2, ......, α5 を対応させればよい。 求める個数は組合せ Cs に一致する。 (2) (1) とは違って, 条件の式にを含むから, 0, 1, 2,3の4個の数字から重複を許し て5個を選び, 小さい順に a1,a2, ・・・..., as を対応させればよい。 求める個数は重複組合せ H5 に一致する。 (3) おき換えを利用すると,不等式の条件を等式の条件に変更できる。 (a+az+ax+a+αs) = b とおくとa+a2+ax+a+as+b=3 また, a+a+astastas≦3 から b≥0 よって、 基本例題 34 (1) と同様にして求められる。 解答 (1) 1,2, - 順に a1,a2, 8の8個の数字から異なる5個を選び, 小さい ・・・・・・, as とすると, 条件を満たす組が1つ決ま る。 よって, 求める組の個数は 8C5=8C3=56 (1) (20,1,2,3の4個の数字から重複を許して5個を選び,小 さい順に a1,a2, ・・・・・・, as とすると, 条件を満たす組が1つ 決まる。 基本333 よって、求める組の個数は 4H5=4+5-1C5=8C5=56 (個) (3) 3-(a1+a2+a3+a+as)=6とおくと a1+a2+ax+a+α5+6=3, ① ai≧0 (i=1,2,3,4,5),6≧0 よって, 求める組の個数は, ① を満たす 0 以上の整数の組の 個数に等しい。これは異なる6個のものから3個取る重複組 合せの総数に等しく 6H3=6+3-1C3=gC3=56 (個) 別解a+a2+ax+a+as=k(k=0,123) を満たす 0 以 上の整数の組(a, a2, a3, 4, as) の数は 5Hk であるから sHo+sHi+sHz+sH3=&Co+5C1+6C2+ C3 =1+5+15+35=56 (個) ← 等式 検討 (2)(3)次 うにして解くこともできる。 (2) [p.348 検討の方法の利 用] b;=a;+i(i=1,2,1 4,5)とすると,条件は 0<b₁<b₂<b3<b4<bs<9 と同値になる。よって、 (1) の結果から 56個 (3)3個の○と5個の仕切り を並べ,例えば, |〇|〇〇|| の場合は (0, 1,020) を表すと 考える。このとき A|B|C|D|E|F とすると, A,B,C,D, Eの部分に入る○の数をそ れぞれ a1, a2, 3, 4,0 とすれば組が1つ決まるか ら 8C3=56 (1)

回答募集中 回答数: 0
数学 高校生

①の式に代入したあとの計算がわからないです(><)

154 00000 基本例題 99 曲線上の動点に連動する点の軌跡 点Qが円x2+y2=9 上を動くとき, 点A(1, 2) とQを結ぶ線分AQを2:1 に内分する点Pの軌跡を求めよ。 CHART SOLUTION 連動して動く点の軌跡 解答 Q(s,t), P(x, y) とする Qは円x2+y2=9 上の点であるから s2+t2=9 Pは線分AQ を 2:1に内分する点であるから y= つなぎの文字を消去して, x, yだけの関係式を導くた 動点Qの座標を(s,t), それにともなって動く点Pの座標を(x,y) とする。Qの 条件を stを用いた式で表し,P,Qの関係から,s,tをそれぞれx,yで表す。 これをQの条件式に代入して, s, t を消去する。・・・・・ 1.1+2s 1+2s 2+1 3 3y-2 x=- 3x-1 = t=- (2) よって S= 問 これを①に代入すると (3x^1)+(3/22) 2 =9 1\2 9 ゆえに (x-3)² + 2/(x-²)² = 9 V- 4 よって (x-12312+(y-12/3)=4.….… ② したがって, 点Pは円②上にある。 逆に,円 ② 上の任意の点は,条件を満たす。 以上から, 求める軌跡は ² 1•2+2t 2+1 中心 = 9 2+2t 3 |p.151 基本事項 1 (0-2)8 $=$ LOOR を満たすも 2 半径2の円 O (s,t) Q -3| YA 0 基本 101 A (1, 2) BATAS I P(x,y) -3 つなぎの文字 s, tを 去。 これによりPの条 件 (x,yの方程式) が得 られる。 VANUS 220-2300 23 円という POINT 曲線 f(x,y)=0 上の動点 (s,t) に連動する点 (x,y) の軌跡 ①点 (s,t) は曲線 f(x, y)=0 上の点であるから f(s,t)=0 s, tをそれぞれx,yで表す。 ③ f(s,t)=0 に②を代入して,s, t を消去する。途中で

回答募集中 回答数: 0