学年

教科

質問の種類

数学 高校生

143. この問題のようにθの範囲が書いていない問題は 0≦θ<2πと考えればいいのですか?? 解答があまりどういうことなのかピンとこなかったので自分が学んだ方法で解こうとしたのですが、この方法(写真2枚目)でも解けますか? 解ける場合どう解くか教えてほしいです。

224 重要 例題 143 三角方程式の解の存在条件 10 の方程式 sin20+acos0-2a-1=0 を満たす0があるような定 ure 囲を求めよ。 指針▷ まず, 1種類の三角関数で表す (1-x2)+ax-2a-1=0 すなわち x2-ax+2a=0 ...... 解答 cos0=x とおくと, -1≦x≦1であり, 方程式は (1-x2)+ax-2a-1=0 すなわち x-ax+2a=0... ① この左辺をf(x) とすると, 求める条件は, 方程式f(x)=0が -1≦x≦1の範囲に少なくとも1つの解をもつことである。 これは, 放物線y=f(x)とx軸の共有点について,次の [1] ま たは [2] または [3] が成り立つことと同じである。 口 [1] 放物線 y=f(x) が-1<x<1の範囲で, x軸と異なる2 点で交わる, または接する。 よって、求める条件は、 2次方程式 ① が-1≦x≦1の範囲に少なくとも1つの解をもっ ことと同じである。 次の CHART に従って、考えてみよう。 2次方程式の解と数々の大小グラフ利用 D, 軸,f(k) に着目! 1 このための条件は、 ①の判別式をDとすると D≧0 D=(-α)²-4・2a=α(a-8) であるから a(a-8) ≥0 (2 よって a≦0,8≦a a 軸x=1/28 について-1<<1から 2<a<2 ...... a>. IKACION cos0=xとおくと, -1≦x≦1 で, 与式は f(-1)=1+3a > 0 から f(1)=1+a>0 から ②~⑤の共通範囲を求めて <a≦0 ① [2] 放物線 y=f(x) が-1<x<1の範囲で,x軸とただ1点 ---- で交わり,他の1点は x<-1, 1<xの範囲にある。 このための条件は f(-1)ƒ(1) <0 1 3 a>-1 1 3 a=- (4) (5) ゆえに (3a+1)(a+1)<0よって-1<a<- a<- 1/13 1 またはa=-1 ① [3] 放物線 y=f(x)がx軸と x = -1 または x=1で交わる。 f(-1) = 0 またはf( 1 ) = 0 から [1], [2], [3] を合わせて -1≤a≤0 [参考] [2] と [3] をまとめて,f(-1)(1)≧0としてもよい。 3 [同志社大] ③3③ 練習 0 の方程式 2cos²0+2ksin0+k-5=0を満な ④143 を求め 検討〉 TAHO x2ax+2a=0 をαについ て整理すると x2=a(x-2) よって, 放物線 y=x2 と 直線 y=a(x-2)の共有点のx座 標が-1≦x≦1の範囲にあ る条件を考えてもよい。 解 編 p.139 を参照。 [1] \ YA + 11 D2 (794) [2] YA -1 Do 基本140 -1 YA -1 1 00 + X 大量 <D-[0] X

回答募集中 回答数: 0
数学 高校生

83. 9行目の「よって3x-2y-1=0」までは理解できました。 写真3枚目のように2点(1,1),(3,4)を通る直線のどこかに (x,y)=(a,b)の点が存在するのは分かります。 そしてこの点は③の直線上にあるのではないのですか? (解答の図ではそうなっていない。)... 続きを読む

DOO がある」 Bがある 一算がらくに AC の傾き 法。 ただい x軸に 用しない 要。 え方をベ 学ぶ。 求める (3) 重要 例題 83 共点と共線の関係 異なる3直線 指針 2直線 ①, ② の交点の座標を求め、その交点が直線③上にあるための条件式を導く。 そして,2点 (1, 1), (3, 4) を通る直線上に点(a,b) があることを示す。 また, 別解 のように,次の性質を利用する方法もある。 点(p,g) が直線ax+by+c=0 上にある ⇒ ap+by+c=0 ⇒点(a,b) が直線px+qy+c=0上にある x+y=1 ①, 3x+4y=1 ②ax+by=1 3 が1点で交わるとき, 3点 (1,1),(3,4), (a,b) は一直線上にあることを示せ。 基本82 解答 ① ② を連立して解くと x=3, y=-2 2直線 ①, ② の交点の座標は (3,-2) 点 (3,-2) は直線 ③ 上にあるから 3a-2b=1 また, 2点 (1,1), (3, 4) を通る直線の 方程式は y-1=(x-1) LA つまり 練習 83 (1) (2) (a, b) (4) (5) (6) ...... ya すなわち 3x-2y=1 A から,点(a,b) は, 直線3x-2y=1上にある。 よって, 3点 (1,1), (34), (a, b) は直線3x-2y=1上にあ る。 (3,4), 別解 原点を通らない3直線 ①, ② ③ が1点で交わるから, その点をP(p,q) とすると, Pは原点にはならない。 声 3 直線 ① ② ③ が,点Pを通ることから p+g=1, 3p+4g=1, ap+bg=1 p •1+g・1=1 p•3+α.4=1 p•a+q∙b=1 であり p = 0 または q≠0 ゆえに、方程式 px+gy=1 3点 (1,1),(3,4), (a,b) は直線 ⑦ 上にある。 3x-2y=1 (1,1) 1 (3,-2) ...... x ⑦ を考えると, ④~⑥か 係数に文字を含まない ①, ② を使用する。 34-26=1 M ⇔点 (α, b) は直線 3x-2y=1上にある。 <x=y=0のとき, ①, ②, ③ はどれも不成立。 点(p, g) が直線 x+y=1上にある ⇔p+q=1 ⇔点 (1,1) が直線 px+gy=1上にある。 <p = 0 またはg≠0 であるか ら⑦は直線を表す。 異なる3直線 2, ax+by=5 2x+y=5 ・①, 4x+7y=5 が1点で交わるとき 3点 (2,1),(4,7), (a,b) は一直線上にあることを示せ。 Op.134 EX57 131 章 3 直線の方程式、2直線の関係 3章 13

回答募集中 回答数: 0
数学 高校生

73.3 これでも記述大丈夫ですよね??

118 日 基本例題73 線分の内分点外分点、重心室1000 3点A(5,4),B(0, -1), C(8, -2) について,線分 AB を 2:3に外分する。 をP, 3:2に外分する点をQとし、△ABCの重心をG とする。 (1) 線分 PQ の中点 M の座標を求めよ。 (2) 点Gの座標を求めよ。 (3) APQS の重心が点G と一致するように, 点Sの座標を定めよ。 p.113 基本事項 ④,⑤5 指針 座標平面上の3点A(x1, y1), B(x2, y2), C(x3, y3) について > nxi+mx2 ny₁+my² 線分ABの内分点 m+n m+n 線分 AB の外分点 解答 (1) 点Pの座標は (2) 練習 73 |-nxi+mx2 m-n -3.5+2.0 -3・4+2・(-1)) 2-3 2-3 点Qの座標は (-2.5 +3.0 -2.4+3・(-1)\ 3-2 9 9 から よって, 線分PQの中点 M の座標は (*) (15+(-10) 14+ (-11)) 2 2 (2) 点Gの座標は y+y2+ys △ABC の重心 x+x2+x3 3 3 (3)S(x,y)として, APQS の重心と点Gのx座標、y座標をそれぞれ一致させる。 |から " -nyi+myz m-n (15,14) 5+x 3 5 すなわち (12/28) 3 2' (5+0+8+(-1)+(-2)) すなわち ( 13.1/28) 3' (3) S(x, y) とすると, (1) から, △PQSの重心の座標は (15+(-10)+x 14+(-11)+ど)から(3) これが点Gの座標と一致するとき よって (-10, -11) ALL (DS-də+²µà)8= 13 (3+y 3' 3 x=8, y=-2 すなわち S(8,-2) 内分点の公式でnを -n におき換えた形 21-684-10-200 (*) 2点 (x1,y1, x2, を結ぶ線分の中点の座標: 1 3 重要 81. 1A x₁+x₂ ₁ + y₂ 2 2 内分点の公式で, m=n=1 としたもの。 (2)2点A(-1,-3), B を結ぶ線分AB を 2:3に内分する (1−1)であるという。このとき, 点Bの AUTA 重心の座標は、3点の平均 とイメージしておけばよい dan+ 0x (1) 3点(1,1),B(3,4,62) にいて、線分ABを3:2に内分する をP, 3:2に外分する点をQとし, △ABC の重心をG とする。 このとき, 3点P, Q, Gの座標をそれぞれ求めよ。 I ! 頂

回答募集中 回答数: 0
数学 高校生

73.3 これでも記述大丈夫ですよね??

118 日 基本例題73 線分の内分点外分点、重心室1000 3点A(5,4),B(0, -1), C(8, -2) について,線分 AB を 2:3に外分する。 をP, 3:2に外分する点をQとし、△ABCの重心をG とする。 (1) 線分 PQ の中点 M の座標を求めよ。 (2) 点Gの座標を求めよ。 (3) APQS の重心が点G と一致するように, 点Sの座標を定めよ。 p.113 基本事項 ④,⑤5 指針 座標平面上の3点A(x1, y1), B(x2, y2), C(x3, y3) について > nxi+mx2 ny₁+my² 線分ABの内分点 m+n m+n 線分 AB の外分点 解答 (1) 点Pの座標は (2) 練習 73 |-nxi+mx2 m-n -3.5+2.0 -3・4+2・(-1)) 2-3 2-3 点Qの座標は (-2.5 +3.0 -2.4+3・(-1)\ 3-2 9 9 から よって, 線分PQの中点 M の座標は (*) (15+(-10) 14+ (-11)) 2 2 (2) 点Gの座標は y+y2+ys △ABC の重心 x+x2+x3 3 3 (3)S(x,y)として, APQS の重心と点Gのx座標、y座標をそれぞれ一致させる。 |から " -nyi+myz m-n (15,14) 5+x 3 5 すなわち (12/28) 3 2' (5+0+8+(-1)+(-2)) すなわち ( 13.1/28) 3' (3) S(x, y) とすると, (1) から, △PQSの重心の座標は (15+(-10)+x 14+(-11)+ど)から(3) これが点Gの座標と一致するとき よって (-10, -11) ALL (DS-də+²µà)8= 13 (3+y 3' 3 x=8, y=-2 すなわち S(8,-2) 内分点の公式でnを -n におき換えた形 21-684-10-200 (*) 2点 (x1,y1, x2, を結ぶ線分の中点の座標: 1 3 重要 81. 1A x₁+x₂ ₁ + y₂ 2 2 内分点の公式で, m=n=1 としたもの。 (2)2点A(-1,-3), B を結ぶ線分AB を 2:3に内分する (1−1)であるという。このとき, 点Bの AUTA 重心の座標は、3点の平均 とイメージしておけばよい dan+ 0x (1) 3点(1,1),B(3,4,62) にいて、線分ABを3:2に内分する をP, 3:2に外分する点をQとし, △ABC の重心をG とする。 このとき, 3点P, Q, Gの座標をそれぞれ求めよ。 I ! 頂

回答募集中 回答数: 0
数学 高校生

29.3 記述はこれでも大丈夫ですか??

52 KONGRE 基本例題 29 絶対値と不等式 8X①000 次の不等式を証明せよ。 (1) |a+b|sa|+|bl(2) la|-|b|≤|a+b)(3) |a+b+c|≤|a|+|b|+| 基本28 重要 30 de+pas 指針 (1) 例題 28 と同様に,(差の式)≧0 は示しにくい。 辺 |A=A2 を利用すると, 絶対値の処理が容易になる。 そこで A≧0, B≧0の A≧B⇔A'≧B'⇔A'-B'≧00mm) の方針で進める。また,絶対値の性質(次ページの①~⑦) を利用して証明してもよ (2),(31) と似た形である。 そこで, (1) の結果を利用することを考えるとよい。 CHART 似た問題 1 結果を利用 方法をまねる 解答 口(1)(|a|+|6|)²-|a+b=a²+2|a||6|+b²-(a²+2ab+b2) =2(abl-ab)≧0 この不等式の辺々を加えて (2)(a よって la+b≧(|a|+|6|) |a+b≧0,|a|+|6|≧0から |a+b|≦|a|+|6| この確認を忘れずに。 別解一般に,-|a|≦a≦al, -16≧0≦16 が成り立つ。|4|≧4,|A|≧-A から -|A|≦a≦|A| −(|a|+|b|)≤a+b≤|a|+|b| したがって |a+6|≦|a|+|6| (2) (1) の不等式でa の代わりに a+b, の代わりにと おくと de+nas (a+b)+(-6)|≦|a+6+1-6| よって |a|≧|a+6|+|6| [別解 [1] |a|-|b|<0のとき a+b≧0であるから,|a|-|6|<|a+6|は成り立つ。 [2] |a|-|6|≧0のとき METOD |a+bP-(|a|-|6|)²=a²+2ab+b2-(²-2|a||3|+62) =2(ab+labl)≧0 ゆえに |a|-|6|≦la+b1 よって (|a|-|6|)≦la+b2 |a|-|6|≧0, la +6|≧0であるから よって (1) [1],[2] から lal-lb|≤|a+b| (3) (1) の不等式での代わりにb+c とおくと la+(b+c)|≦|a|+16+cl la+b+cl≦|a|+|6|+|c| どのよ ≦|a|+|6|+|c| 不 oktob SARA ◄|A|²=A² |||ab|=|0||0| 10-357 20 TATAR -B≤A≤B ⇔ [A]≦B ズーム UP 参照。 lal-1b|≤|a+b||+o)S\ |a|-|6|<0≦|a+6 [2] の場合は,(2) の左辺 右辺は0以上であるから、 (右辺(左辺) 0 を示 す方針が使える。 BY 05 (67)S 1930 次の不等 不等式√²+ 62 +1 √ x2+y2+1≧lax+by+1を証明せよ ** (1) の結果を利用。 (1) の結果をもう1回利用。 (16+cl≦|6|+|cl)

回答募集中 回答数: 0
数学 高校生

22. 1.2両方この記述でも大丈夫ですか??

42 基本例題 22 条件つきの等式の証明 a+b+c=0のとき, 次の等式が成り立つことを証明せよ。 (1) a²+26²-c²+3ab+bc=0 (2) a³ + b³ + c³ = -3(a+b)(b+c)(c+a) 指針a+b+c=0は条件式であるから, 文字を減らす方針で進める。 すなわち, c=-a-b[=-(a+b)] として, cを減らす。 【CHART 条件式 文字を減らす方針で使う 解答 (1) a+b+c=0より, c=-(a+b) であるから a²+26²2-c2+3ab+bc=a²+26²-(a+b)2+3ab-b(a+b) =a²+26²-(a²+2ab+b²) +3ab-ab-b2 =0 (2)a+b+c=0より, c=-(a+b)であるから a³ + b³ + c³+3(a+b)(b+c)(c+a) このとき, a,bは自由に動くことができて, この問題は, a,b,cの3文字から 2文字についての等式の証明になる。 (2) 前ページ例題21の指針3の方針。 A=B⇔A-B=0 から,a3+b+c3+3(a+b)(b+c)(c+α)=0を証明する。 HAL =a³+b³—(a+b)³ +3(a+b)(b¬a−b)(-a-b+a) =a³+b³-(a³+3a²b+3ab²+b³)+3ab(a+b) =-3a²b-3ab²+3a²b+3ab² =0 したがって a³+b³+c³=−3(a+b)(b+c)(c+a) 本 ..40 基本 0 a b a b (2) 答 b <c=-a-b=- (a+i) えに <{-(a+b)}^=(a+b) =(a+b)-3ab(a+b を利用してもよい。 につ a b (a+b) を展開せずにゆえ a³ +6³ 検討 条件式を丸ごと利用する a+b+c3=3abc すなわち+b+c-3abc=0を証明すればよい。 ここで, p.10で取りチー a+b+c=0 より, a+b=-c, b+c=-a,c+α=-bであるから, (2) では た因数分解の公式5を利用すると,次のように、条件式a+b+c=0を丸ごと代入できる。 a³ + b³ + c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ca)-0 こ 考

回答募集中 回答数: 0