学年

教科

質問の種類

数学 高校生

(2)でなぜ2階微分をするのでしょうか。 (4)の面積Sを求める時にy=exとy=f(x)の上下関係をつけるためですか。だとすると(2)を解く前に(4)の方針まで立てとかなければいけなくなっちゃうと思うのですがどうでしょう。 解説お願いします!

基礎問 197 196 第6章 積分法 108 面積(V) 関数 f(x) = e^(2x) (2) について, 次の問いに答えよ。 (1) f(x) の極値を求めよ. (2)y=f(x)のグラフの概形をかけ. (3)y=f(x)のx=a (a>0) における接線が原点を通るとき, αの 値を求めよ. (4)(3)で求めた接線と y=f(x) で囲まれた面積Sを求めよ. 精講 (1)~(4)まで, すべていままでの基礎問で学んだ内容ばかりです. わ からなくなったら, それぞれ, 次の基礎問をもう一度見直してく ださい (1) 60, 70 (2) 78 (3) IIB ベク86,IIB ベク 87 (4)105 解 答 () うになる. (3) (a, e^(2a-a2)) (0 <a≦2) における接線は, y-e (2a-a²)=e^(2-a)(x-a) y=eª(2-a²)x+a²(a−1)eª これが, 原点を通るので, a^(a-1)e=0 a²e>0 th, a=1 このとき接線は y=ex (4) 右図の斜線部分の面積がSだから, S=e-fe³(2x-x²)dx =e-[((2x-x²)-(2-2x)+(−2)}e=]" 120+(x-2)-] =e+(e-4)=-4 yy=ex- Z y=f(x) 注定積分のところで,スペースの関係上, 96 (2) の公式を使いま したが,各自、部分積分を2回使う解答をつくっておいてください。 なお,その解答は96(2)そのものです。 (1)f'(x)=e^(2x)+e^(2-2x)=e*(2-x2) 0≦x≦2 において, f'(x)=0 を解くと√2 よって、増減は下表のようになる. I 0 ... √2 2 f'(x) + 0 2 (2-1) b 0 f(x) 0 よって, x=√2 のとき, 極大値 2c (√2-1) (2) f(x)=e^(2x)+e^(-2x)=-ex(x+2x-2) 0≦x≦2において, f"(x)=0 を解くと, =-1+√3 ポイント 融合問題を解くためには,まず, 基本を確実に身につ けておくことが大切 Y 演習問題 108 よって、凹凸は下表のようになる. 2e (2-1) I 20 ... √3-1 ... 2 f" (エ) + 0 2-(2-3-3) - f(x) U 変曲点 O √3-1 あわせると, y=f(x) は右図のよ CamScanner TX++ 関数 f(x) = e +e' * と g(x)=-(e+e-x) +k (k: 定数) に ついて,次の問いに答えよ. (1)y=f(x)のグラフの概形をかけ. (2) y=f(x)とy=g(x) がy軸上で交わるようなkの値を求め (3)(2)のとき,y=f(x) と y=g(z) で囲まれた部分の面積Sを 求めよ。 PQ 第6章

解決済み 回答数: 2
数学 高校生

1番は解決しました。2番はなぜ外すことができるのか教えてほしいです。

考える。 EU), であるこ 都産大 ] で、次の C BU (2) ACB が成り立つとき, A, B を数 が同時に成り立つことである。 線上に表すと, 右の図のようになる。 ゆえに, ACB となるための条件は k-6≦-2... ①, 3≦k ... ② k-6-2 3 kx これと②の共通範囲を求めて ①から k≤4 3≦k≦4 =xlxは物を全体集合とする。ひの部 3 ←左の図 をかいて 8-14 +7. -+5) ST. ANB B(2.5)であるから a+1-5 =2のとき SEA ゆえに a+7=9, a²-4 よって A=12.4.5), B={4, g このとき、AN(25) となり a+7=5, a 練習 1から1000までの整数全体の集合を全体集合とし,その部分集合A, B, C-2 のとき ③47 A={nnは奇数, n∈U}, B={n|n は3の倍数でない, nEU}, C={n|n は 18 の倍数でない, nEU} とする。このとき, AUBCCであることを示せ。 A={n|n は偶数,nEU}, B={n|nは3の倍数,n∈U} 偶数かつ3の倍数である数は6の倍数であるから AnB={nnは6の倍数, n∈U} また,C={n|n は 18 の倍数, n∈U}であり,18の倍数は6の CCANB & J 倍数であるから よって A={2, 4.5), B=(4. このとき、ANB ={2}となり、 上から a=2 [←BC30以下の自然数全体を全体集合 「〜でない られて このこともA={2, 4, 6, 8, 10, 12, の集合をB5の倍数全体の集合 (1) ANBOc (2 ることの着 30}. B={3,6,9,12,15,18, 21, 24, 27, 30), .0)- CCAUB ド・モルガンの法則により, An=AUBであるから 0 よって ② CAUB すなわち AUBCC 検討 ド・モルガンの法則 AUB=A∩B, ANB=AUB が 成り立つことは,図を用いて確認できる。 ←QCPによって C=(5, 10, 15, 20, 25, A∩B∩C={30} BUC 。 (a) U .0) まず, AUB=ANBについて, AUB は図(a) の斜線部分, AnBは図(b)の二重の斜線部分である。 の ={3,5,6,9,10,12, よって AN(BUC)= A∩B={6,12,18,2 (AUB) NC= (b) U O が AUB B (b) 部分が 重なり合った 次のことを証明せ ANB SO (1) A={3n-1/r 図 (a) の斜線部分と図(b) の二重の斜線部分が一致するから ALIZ (2) A={2n-1| xEB とすると, x=6

回答募集中 回答数: 0