学年

教科

質問の種類

数学 高校生

この問題で自分はMP:PN=(1-t):tと置きました。すると、tの値を間違えてしまいました。どのようにしたらtと1-tの置く位置を間違えないようにできますか?

★★ CAの重心を それぞれST また, C を導 垂直で,大きさが6の 48空間においてでない任意の方に対して,とx軸, y軸, 2軸の正の ★★☆☆ のなす角をそれぞれ α, B, y とするとき, cos'α+ cos' B+ を証明せよ。 例題 51 空間における交点の位置ベクトル平一口 思考プロセス D 頻出 ★★☆☆ 四面体 OABC において, 辺 AB, BC, CA を 2:33:2, 1:4 に内分する点 をそれぞれL,M,Nとし, 線分 CL と MN の交点をPとする。 OA=a, OB=6,OC=c とするとき,OP を a,b,cで表せ。 例題23(1) の内容を空間に拡張した問題である。 « ReAction 2直線の交点の位置ベクトルは, 1次独立なベクトルを用いて2通りに表せ 例題23 見方を変える 1次独立のとき ア 空間におけるベクトル OS 線分 CL 上にある 点P OT OP = (1-s)[ 線分 MN 上にある +s=a+6+[ イ OP = (1-t)+t¯¯ = @_ã+® 6+ c F 解点Pは線分CL上にあるから, 23 例題 CP:PL=s:(1-s) とおくと 'B OP= (1-s) OC+ SOL 辺AB, BC, CA を2:3, 3:2, 1:4 に内分する点が それぞれL,M,Nであ る。 D 00 + OA + OB 3 (1-s)c+s(a+b) 3 Ak-- 30A +20B OL= 5 5 2+3 = -sa+sb+(1-s)c L ③ -2 ... 1 B3 M O + OB + OC 点P は線分 MN 上にあるから, MP:PN=t: (1 - t) とお 3 20B + 3OC OO + OC + OA = くとOP (1-t)OM + tON OM= 3 JA12 3+2 40C+OA + ON 5 5 5 1+4 201 = 5 a+ (1-1)+(3+1)c +1-0+(3+)-2-) Jet J a, はいずれも0でなく,同一平面上にないから, ①,②り 3 ---(1-0) -0.178 ■係数を比較するときに は必ず1次独立であるこ とを述べる。 1-s= (3 1 5 ⑤5 3 ③ ④ より S= t= 4 3 → これは ⑤ を満たすから OP= a+ 1 7 3 -6+ ①にsの値, または ②にもの値を代入する。 20 10 105 p.139 問題51 ぞれS, TE 作ることを示 p139 問題 [習 51 四面体 OABC の辺 AB, OC の中点をそれぞれ M, N, ABC の重心をGと OP a, b, OPを4, で表せ。 し、線分 OG, MN の交点をPとする。 OA = 4, OB=6,OC=とすると

解決済み 回答数: 1
数学 高校生

・数C ベクトル ここはどう式変形しているのですか?また、単位ベクトルが関係していそうだと思ったのですが合っていますか?

位置ベクトル、ベクトルと図形 440A'C=AOB'C から。 (ア)∠O を2等分するベクトルは,k ることを示せ。 (+) ( 628 基本 例28 内心、傍心の位置ベクトル を AB, AC で表せ。 00000 (1)AB=8,BC=7,CA=5 である △ABCにおいて, 内心を1とするとき, (2) AOAB において, OA=d, OB=とする。 別解(), と同じ向きの単位 ベクトルをそれぞれ OA', OB' とすると O'= OB'= al' 8-59 16 B OA' + OB'=OC とすると,四角 ō (kは実数,k=0)と表され 形 OA'CB' はひし形であるから, 点Cは ∠Oの二等分線上にある。 よって、 求めるベクトルは, kをk=0である実数として A B 40A-OB-AC-B'C-1 基本26 kOC=k(OA'+OB')=k 1=(+/ と表される。 (イ)点Pは△OAB において ZOの二等分線上にあるか 5, (ア)より 0 -3-b D ⇒ BD: DC=AB: AC OP= + (s は実数) (イ) OA=2,OB=3,AB=4のとき,∠0の二等分線と∠Aの外角の二等分 線の交点をPとする。このとき,OP を d で表せ。 指針 (1) 三角形の内心は、3つの内角の二等分線の交点である。 次の 「角の二等分線の定理」 を利用し,まずAD を AB, AC で表す。 右図で ADが△ABCの∠Aの二等分線 (2) 次に, △ABDと∠Bの二等分線BIに注目。 AB の交点をDとして,まずOD を a, で表す。 Oの二等分線と辺 別解 ひし形の対角線が内角を2等分することを利用する解法も考えられる。 つ まり, OA'=1, OB' = 1 となる点 A', B' をそれぞれ半直線 OA, OB 上にとっ てひし形 OA'CB' を作ると, 点Cは∠0の二等分線上にあることに注目する。 (イ)(ア)の結果を利用して, 「OP を d, で2通りに表し, 係数比較」 の方針で。 点Pは∠Aの外角の二等分線上にある→AC=OA となる点Cをとり, (ア)の 結果を使うとAPはa, で表される。 OP = OA+APに注目。 ZCの二等分線と辺 AC=OA となる点Cをとる と, 点Pは△ABCにおいて ∠BAC の二等分線上にあるから よって + AP-AB AC |ABITACH (tは実数) OP=0A+AP 4-B k=0のときは, OCとなり,不合 理。 注意点Pは、 △OABの心 (20 内の傍心) である (数 学A)。 の結果を利用。 三角形の内角の二等 分線を作り出すため の工夫。 (ア)の結果を利用。 629 OPをもの式に直す。 AB=OB-OA, |AB=4, AC-DA. ||AC|=|0A|=2 章 4 =1+1=2+1)=(1+1/+1/ 解答 (1) △ABCの∠Aの二等分線と辺BCの交点をDとすると BD:DC=AB:AC = 8:5 a=0, 60, axであるから 1/2=1+1/11/23=1/4 St ABの交点をEとし AE: EB=5:7, 5AB+8AC よってAD= 13 0-8 15 EI: IC=- 10:5 これを解いてs=6,t=8 ゆえに OP=3a+26 別解 (イ) AB とOP の交点をDとすると AD: DB=0A:OB=2:3 8 56 また, BD=7• = であるから 13 13 =2:3 APはOAD の∠Aの外角の二等分線であるから B AI: ID=BA:BD=8: 56 13 7 D C =13:7 このことを利用して もよい。 OP:PD=AO:AD=2:(4×2/3) = 5 =5:4 「外角の二等分線の定 理」 (数学A) を利用 する解答。 AD: DB=2:3 から AD: AB=2:5 ゆえに 20 AI=22AD=13.5AB+8AC (2)(ア∠Oの二等分線と辺 AB の交点をDとすると AD: DB=OA: OB=|ab| 20 =1/AB+/AC 13 角の二等分線の定理 を2回用いると求め られる。 よって OP=5OD=5• 3a+26 2+3 -=3a+26 角の二等分線の定理 を利用する解法。 (2)ア)の結果は,三角形の内心や角の二等分線が関係する問題で有効な場合もあるので、覚 えておくとよい。 検討 ゆえに OD= |6|0A+|4|OB_ |a|+|6| ab 0 a+b a b (+) △OAB の ∠0を2等分するベクトルは OB OA k + (kは実数, k0) |OA| |OB| 求めるベクトルは, t を t≠0 である実数として tOD と表 される。 ab a b +16 -t=kとおくと, 求めるベクトルは B Tal- D61 (+) (kは実数, k≠0) tOD=lab + 練習 (1) △ABCの3辺の長さをAB=8,BC=7, CA=9とする。 AB=6, AC=cと 28 し, △ABCの内心をPとするとき, AP を6,cで表せ。 (2) AOAB において, |OA| =3, |OB|=2, OA・OB=4とする。 点Aで直線 OA に接する円の中心Cが∠AOBの二等分線上にある。 このとき,OCを OA=d, OB= で表せ。 [(2)類 神戸商大] p.638 EX 19. 20

解決済み 回答数: 1
数学 高校生

数B 数列の問題です。練習27を教科書の例題を見ながら途中まで解いてみましたが、ここまで合っているかどうかも、この先の解き方も分かりません。

ここでは、1からnまでの自然数の2乗の和 第2節 いろいろな数列 | 27 Σ k² = 1²+2²+3²+...+n² を求めてみよう。 恒等式(k-1)=3k-3k+1 を利用して考える。 に1からnまでを順に代入すると 5 左辺だけ加えると k=1 13-03-3-12-3-1+1 N-03 k=2 23-13-3-22-3.2+1 k=3 3-2°=3.32-3・3+1 + n-(n-1)3 n3-03 k=nn³-(n-1)³=3.n²-3⋅n+1 これらn個の等式の辺々を加えると n=3(1+2+3+......+n") - 3(1+2+3+... +n) +1×n 第1章 数列 練27 (43451 k4-(k-1)" 2 468-660-46-1 を用いて 次の等を証明せよ。 ん {In (n+1)}" k=1 K=2 K=3 100 k=w 13×23×33× 1"-04 4.13 -6.12 +4.1 - 1 2" - 17 = 4.23-6-22-412-1 34-24 = 4.33-63244×3-1 h" - (n-1) = 4 n³ - 6 ∙n² +4. n -1 10 これろん個の等式の辺々を加えると 14- 4 (13 + 2 ³ - 33 + +-6(1+2+32+TH + 4(1727311 th) n すなれる n4 E 4263 kol 2 6号に+4に 1 kol " 15 h4 = 4 2 ₤ 3 - 6 2 1²-4.2 4.(n+1)-1 (CH すなわち n³=3k²-3k+n k=1 k=1 1 n³-3 k²-3n(n+1)+n k = n(n+1) k=1 よって 6k=2n+3n(n+1)-2n k=1 6k=n(n+1)(2n+1) k=1 したがって Σ k² = 1² +2²+3² + ......+n²= n(n+1)(2n+1) k=1 練習等式 -(k-1)^=4k-6k²+4k-1 を用いて, 次の等式を証明 27 せよ。 {1/(n+1)} =1+2+3+…+= {/12n (n+1) *kにどのような値を代入しても成り立つ等式を,kについての恒等式という。 20

解決済み 回答数: 1
数学 高校生

(2)の0<1/x<1の式に 問題の式を変形させずに入れてはさみうちの原理を使うことは可能ですか?またできないのであればなぜできないのか教えて欲しいです

=10gsx1 =10g3√x 3x-1 CHART 分母分子に 3x-1 を掛 √xで割る。 (1) 不等式 [3]≦3x < [3x]+1が成り立つ。 解答 x0 のとき,各辺をxで割ると [3x] 1 ここで,3< + から x x (s) [3x] 関西大 基本例題 52 関数の極限 (4) *** 2+3x+x) 基本事項 4. 基本 50 (1) lim x 次の極限値を求めよ。 ただし, [x] は x を超えない最大の整数を表す。 ・はさみうちの原理 89 00000 [zais (2) lim(3*+5*)/ 介 p.82 基本事項 基本 21 利用して,まず 針 。 分母分子を 形 することに 込むのもよい。 818 極限が直接求めにくい場合は、 はさみうちの原理 (p.825 ①の2) の利用を考える。 (1) n≦x<n+1 (n は整数) のとき [x]=n すなわち [x]≦x<[x]+1 よって [3x]3x < [3x]+1 この式を利用してf(x)≦ [3x] -≦g(x) x (ただしlimf(x) = limg(x)) となる f(x), g(x) を作り出す。 なお、記号 []はガ →00 ウス記号である。 (2) 底が最大の項でくくり出すと352) 5(/)+112 (2)の極限と {(g)+1} 力な にや 実で学 2 2章 ⑤関数の極限 はさみうちの原理を利用する。x→∞であるから,x>1 すなわち <1と考 えてよい。 の極限を同時に考えていくのは複雑である。そこで, 0 < x 求めにくい極限 不等式利用ではさみうち 203 [3x] [3x] ≤3< 1 + x x x 3-1 [3x] x XC よって ≤3 x x はさみうちの原理 巻 f(x)≦h(x)≦g(x)で limf(x)=limg(x)=α →∞ x→∞ O lim (3-1) =3であるから (2)(3)1 x→∞であるから,x10 < 1/2 <1と考えてよい。 x このとき(23)+1}{(1) +12 <{(1/3)+1} すなわち 1<{(3³)*+1}* <(3)*+1 lim(2/2)+1} =1であるから lim [3x] lim- mil ならばlimh(x)=α =3 x→∞ x→∞ x Anie 3x 底が最大の項でく くり出す (*) A>1のとき,a<b ならば A°<A° 3 +1>1であるか ら, (*) が成り立つ。 -ら、 する。 よってtim(3*+59) - im5(2)' +1-3-1-5 x ・ら から

解決済み 回答数: 1