学年

教科

質問の種類

数学 高校生

⑶教えてほしいです、ちなみに、自分で解いたのが写真3枚目なんですけど、答えは48でした

Date 【5】 図のように正五角形の頂点となる5つの地点 A, B, C,D,Eがある. これらは辺と対角線からなる10本の道 でつながっていて, 頂点間の移動はこれらの道を通って行 われる.なお,道の途中で他の道に移ることはできない. 次の各問いに答えよ. 結果のみではなく, 考え方の筋道も 記せ. B (1) Aから出発し, B, C, D, Eの4地点をちょうど一度 ずつ通ってからAに戻る道順を考える.例えば,以下は 条件を満たす道順のうちの3つである。 C A E A→B→C→D→E→A A→C→E→D→B→ A A→E→D→C→B→A (i) 条件を満たす道順の総数を求めよ. (ii) (i) のうち, C→Dという移動を含む道順の総数を求めよ. (2) Aから出発し, Bだけをちょうど二度通り, C,D,Eは一度だけ通ってAに戻 る道順を考える.例えば,以下は条件を満たす道順のうちの1つである. A→B→C→D→B→E→A ただし, BBのように、同じ点に留まるものは、二度通ったとはみなさない。 (i) 条件を満たす道順の総数を求めよ. (i) (1) のうち, .→B→E→B→・・・のように同じ道を続けて通る移動を含む道順 の総数を求めよ. (3) Aから出発し, B, C,D,Eのうち, 1地点だけをちょうど二度通り,残りの3 地点は一度だけ通ってAに戻る道順を考える.そのような道順のうち, 同じ道を 通らないような道順の総数を求めよ. 1年 駿台6月 ☆BCDEの順列を考えればよいだけ! 4! =4×3×2= 24 (ii) B [CD] E 31=3×2=6. ■(i) ○ ○ ^ ^ ^ 3:x462= 3×2×4 (50点) Cor Dor E となりあわないよう にする =36 先に他のを並べて、 その間を考える!!

解決済み 回答数: 1
数学 高校生

数学Aの順列・組み合わせの問題です。左写真の(2)(ⅱ)の問題で、右写真の赤線部から青線部への式変形をどうやってやっているのか分からないので教えて欲しいです。

154 第6 問 94 階乗, Pr, Cy の計算 (1) 次の計算をせよ. 10! (i) 8!-6! (ii) 7! (iii) 7P3 (iv) 6C4 (2)次の式が成りたつことを示せ. (i) *Cr=nCn-r (i) Cr=-1Cr-1+n-1Cr で 精講 (m (1)(i)(i) 記号 n! は 「nの階乗」 と読みますが,これは, nx (n-1)x...×2×1 とnから1までをかけることを表す記 号です.ただし, 0!=1 と約束します. n! は 「異なるn個のものを並べる方法」 の総数を表します. P は「異なるn個のものから個のものを選んで並べる方法」 の総数 を表す記号でこの総数は nx (n-1)x...×(n-r+1) と表せるので n! Pr= が成りたちます. (n-r)! (iv) C, は「異なるn個のものから個のものを選ぶ方法」 の総数を表す記 で,個のものを並べる方法が! 通りあることを考えると n! ,,すなわち,,=- r!(n-r)! が成りたちます。 (2)(i), (ii)ともに n! nCr= r!(n-r)! を使います. 解答 (1)(i) 81-6!=6!(8・7-1)=720×55 18!, 6! を計算してひ くのではなく, 6! で =39600 10!_10・9・8・7! くくるのがコツ = =10・9・8=720 7! 7! 7! (iii) 7P3- = 4! -=7・6・5=7・3・10=210 10を先につくる 6! (iv) 6C4= 4!2! 2 6.5=15 計算がラク

解決済み 回答数: 1
数学 高校生

絶対値を含む方程式(場合分け)の範囲です。 1枚目2枚目のそれぞれ(2)の問題ですが、 X=1、-1を場合分けする際に 1枚目の時は(ⅱ)-1≦X≦1 2枚目の時は(ⅱ)-1≦X<1 なぜ一緒のこの2つ問題では符号が違うのでしょうか。 どういった違いがあるのでしょうか... 続きを読む

基礎問 18 絶対値記号のついた1次方程式 次の方程式を解け. (1) |.r-1|=2 |精講 |x+1|+|x-1|=4 絶対値記号の扱い方は11で学んだ考え方が大原則ですが、 合はポイントⅠの考え方が使えるならば、 場合分けが けラクです. (1) (解I) 解 HO |x-1|=2 は絶対値の性質より1=±2 よって, x=-1,3 (解Ⅱ) -11={ c-1|= だから, x-1 D (x≥1) -(x-1)(x<1) i) x≧1のとき ① は x-1=2 x=3 これは,x≧1 をみたす. ii) x<1のとき ①は -(x-1)=2 :.x=-1 これは, x<1 をみたす. よって, x=-1,3 (2) i) x<-1 のとき x+1<0, x-1 < 0 だから ②は(x+1)(x-1)=4 -2x=4 ... x=-2 これは,<-1 をみたす. i)-1≦x≦1 のとき +10, -1≦0 だから +1-(-1)- これをみたす (注)くのとき +1301>0 1ェー 28-4 ic これは、1<ェを (1) 甘)、血)より (2) A(-1). ら、②は 上の数直線により、 絶対値の 40となる で場合分 はじめにし た すかどう ① ェの値にかか ②x>1のとき (3) が大きくな くー1の ェが小さく ② ポイント いこと エック 演習問題 18 (1) ☆

解決済み 回答数: 1
数学 高校生

水色の印をつけているところなんですけど、なぜM殻が18じゃなくて8なんですか??解説お願いします。

基本例題3 原子の構成 次の各原子について、下の各問いに答えよ。 (ア) 12C (イ) 'C (ウ) 180 (1) S (オ) Ca 8-19 (1) (ア)(イ)のような原子を互いに何というか。 (2) 原子核中の中性子の数が等しい原子はどれとどれか。 (ア)~(オ)の記号で記せ。 (3)最も外側の電子殻がN殻である原子はどれか。 (ア)~(オ)の記号で記せ。 (4) 価電子の数が最も少ない原子はどれか。 (ア)~(オ)の記号で記せ。 考え方 (1) 原子番号は同じで、質量数が異なる原子ど うしを互いに同位体という。 2) 中性子の数=質量数陽子の数 (原子番号) _3) N殻は内側から4番目の電子殻であり、 最 外殻がN殻になる原子は第4周期に属する。 4) 貴ガス以外の典型元素の原子では,最外殻 電子の数と価電子の数は等しい。 貴ガスは安定 であるため、価電子の数を0とする。 (2) 解答 (1) 同位体 (2) 中性子の数は, (ア): 6, (イ): 8, (ウ):8, (エ): 16, (オ):20である。 (イ) と (ウ) (3) 2Caは第4周期に属し, その電子配 置は,K2, L8, M8, N2 である。(オ) (4) (ア)(イ) の価電子の数は4, (ウ) は6,(エ)は6(オ)は2である。(オ) M 基本例題 4 原子・イオンの電子配置 →問題 22.24 次の(ア)~(オ)の電子配置をもつ粒子について,下の各問いに答えよ。 (ア) (イ) (ウ) (エ) (オ) (8+) 10+ 11+) 12+ 17

未解決 回答数: 0