学年

教科

質問の種類

数学 高校生

この問題答え見てもよくわかりません

精講 133 計算の工夫 次のデータは5人のハンドボール投げの記録である。 28,α,24,b,c (単位はm)+01+819~ このデータでは、次の4つの性質が成りたっている. (ア) 24 <a<28<b<c (イ) 第3四分位数は33m (ウ) 平均値は 29m (エ) 分散は 14 このとき, a, b, c の値を求めよ. 文字が3つありますので,第3四分位数, 平均値,分散の定義に従 って等式を3つつくり、連立方程式を解けばよいだけですが,数値 が大きいので,計算まちがいが心配です. そこで,平均値がわかっているので,すべてのデータから平均値 29m を引 いた新しいデータを考えることで,計算量を減らす工夫を学びます。 解答 与えられたデータから29m をひいた数を 新しいデータとして考える. すなわち, 小さい順に, -5, a-29, -1, 6-29, c-29 を考える. α'=a-29,b'=b-29, c′'=c-29 とおく . (イ)より, b+c=33 だから,b+c=66 2 : b'+c'=8. ...... (ウ)より,24+α+28+b+c=29・5 ∴a+b+c=29・5-52 よって, a'+B'+c'+29・3=29・5-52 a'+b'+c′=29・2-52 ③) 26-166'+64-40=0 '-86'+12=0 (b'-2)(b'-6)=0 6'2 または 6 6'=2のとき,c=6 B'=6 のとき, c'=2であるが, =44 bc より, B' <c' だから,このときは不適. よって, '=2,'=6 以上のことより, a=27,6=31,c=35 注もし、元のデータのまま解答をつくると、 でき上がる 6+c=66,a+b+c=93, (a-29)2+(6-29)^2+(c-29)²= この時点で, a'=a-29,6'=6-29, c'=c-29 とおきた せん. 演習問題 133 視力検査の数値のように,小数点以下を含むデー 仕方は, 137で学びます. G 次のデータは5人の体重測定の結果である 57,64, a,b,c (単位はkg) このデータに対して、次の4つの性質が (ア) 57 <a<b<64 <c (イ) データの範囲は 10kg (ウ) データの平均値は 62kg (エ) 11.6

回答募集中 回答数: 0
数学 高校生

2番の計算がわかんないです

基礎問 (2) n を最大にするn を求めよ. 119 確率の最大値 白玉5個,赤玉n個の入っている袋がある。この袋の中から、 2個の玉を同時にとりだすとき, 白玉1個, 赤玉1個である確率 を pm で表すことにする.このとき,次の問いに答えよ。ただし、 n≧1 とする. (1) n を求めよ. (1) DnF (nt5) (n+4) 5D 2.5.n (n+5)(n+4) 10n (n+5)(n+4) n! ncy= r!(n-r)! Dn+1= (2) 10(n+1) (n+6)(n+5) × pn (n+5)(n+4) 10n +1の形で1と大 (n+1)(n+4) n(n+6) =1+ 4-n 小を比較 n(n+6) pn+1-1= 4-n pn n(n+6) <n(n+6)>0 だから よって, n<4のとき Dn+11 符号を調べるには分 Pn 子を調べればよい |精講 条件に文字定数々が入っていると、確率は”の値によって変化する ので、最大値が存在する可能性があります. 確率の最大値の求め方 は一般に,関数の最大値の求め方とは違う考え方をします.それは, 変数が自然数の値をとることと確率≧0であることが理由です. この考え方は、 パターンとして頭に入れておかなければなりません. n=4 のとき, Ds=ps n≧5のとき,n+1<1 pn : p₁<p2<p3<p4=p5> p6> p7>....... よって, n を最大にするnは 4,5 この式をかく方がわ かりやすい その考え方とは次のようなものです. いま, すべての自然数に対してp">0 のとき, ある自然数Nで, ポイント 確率の最大値は,わって1との大小比較 n≦N-1のとき Dn+1> >1 pn pn+1 n≧N のとき, <1 pn この考え方は確率以外でも ① 定義域が自然数 ② 値域>0 をみたす関数であれば利用できます。 たとえば,f(n)=1 n(n+3) が成りたてば, nで表されている確率は, 2" Þ₁<þ2<<þN> N+1>...... などです. この関数は n=2で最大になりま すので、各自やってみましょう. が成りたちます. だから n=Nで最大とわかります. すなわち, pn Dn+1 と1の大小を比較すればよいのです. ここで, 演習問題 119 Pn+1 >1Pn+1-pn>0 Pn ですから, Pn+1-0の大小を比較してもよいのですが、 確率の式という のは、ふつう積の形をしていますので,わった方が式が簡単になるのです. ある袋の中にn個の白玉が入っていて、そのうち5個に赤い印 がついている。その袋から, 5個の玉を同時にとりだしたとき,2 個の玉に赤い印がついている確率をpm とおく ただし, n≧8と する.このとき、次の問いに答えよ. するn を求めよ.

回答募集中 回答数: 0
数学 高校生

問題の下の解説の「x,yの2次式の因数分解」 のところで、展開をしなくていいのは、 展開した式を入れ替えても答えは同じっていう 性質があるからですか?

2 因数分解/2次式 つぎの式を因数分解せよ. (酪農学園大酪農, 環境) (北海学園大工) (東北学院大・文系) (1) (a-b+c-1) (a-1)-bc (2) 4.2-13zy+10y2 +18æ-27g+18 (3)(x+2y) (æ-y)+3y-1 因数分解では最低次の文字について整理する 2文字以上が現れる式の因数分解の原則は,最低次 その文字 (複数あるときはどれか1つの文字) について整理することである. 一般に,次数の低い式の方 が因数分解しやすい. 仕 解答 xyの2次式の因数分解 原則に従えば,xか」について整理するところであるが,(3)において (x+2y) (x-y) を展開して整理するのはソンである. 「x+2y」 「x-y」 を用いて解答のように「たす きがけ」をすればよい。 (2)も, x,yの2次式の部分を因数分解すれば同様にできる(別解) 慣習 因数分解せよ,という問題では,特に指示がない限り, 係数が有理数の範囲で因数分解する. (2) (3) ((+23)(x-3) + 33-17 (1) まずcについて整理することにより, 与式= {c(a-1)+(a-b-1) (a-1)}-bc ←与式はαについては2次だが, b やcについては1次. =(a-b-1)c+(a-b-1) (a-1)=(a-b-1)(a+c-1) (2) まずェについて整理することにより, (-a+b+1)(-a-c+Uod 与式=42-(13y-18)x + (10y2-27y+18) =4x²-(13y-18)x+(2y=3) (5y=6)... x= ={x-(2y-3)}{4m-(5y-6)} 2 × ①+56 7-2 →27 ←1 -(2y-3) × -(13y-18) =(x-2y+3)(4x-5y+6) 14 -(5y-6) 注 ① におけるたすきがけで, 試行錯誤するのを避けるためには, ①= {ar-(2y-3)}{bx-(5y-6)} とおき, 展開して係数比較すればよい. æの係数は (yは定数と見る), -{(5a+26)y- (6α+36)} となり, ー (13y-18) と一致するので 5α+26=13,6a+36=18. これを解いて α= 1, 6=4となる. (3) 与式={(x+2y)-1}{(x-y)+1} てんか =(x+2y-1)(x-y+1) 【別解】 (2) [x,yの2次式の部分をまず因数分解して, (3) と同様に解くと] であるから, 4.2-13ry+10y2=(x-2y) (4π-5y) 与式= (x-2y) (4-5y) + (18-27y) +18 このときの係数も一致する. x+2yx-13y x-y →-13 12--13 0 4 -5 ={(x-2y)+3}{(4x-5y)+6} =(x-2y+3)(4x-5y+6) 2 演習題(解答はp.22) (1) (ry) (x+y-z (z+2y) を因数分解せよ. (2) 3a+26+αb +6 を因数分解すると d)( x-2y 3 4x-5y 6 × -18x-27y 13) (48 (北海道薬大) である.また, (1) である. (3)は,例題 (2) と同様 (岐阜聖徳学園大) に2通りのやり方があ (静岡産大) . ry+xz+y2+yz+3 +5y+2z+6 を因数分解すると (3) 8-18y2+10x+21y-3 を因数分解せよ.

回答募集中 回答数: 0
数学 高校生

(2)で(1)の不等式をどう生かしたのか、 解説の一連の不等式の流れがよくわかりません。

14 不等式の証明/拡張した形 (ア) (1) yが実数のとき, 2 (2) a, b, c が実数のとき, x+y\2 であることを証明せよ. であることを証明せよ。 a²+26² + c² = (a+b+c)². (イ) (1) ||<1, y|<1のとき, zy+1>æ+yを証明しなさい。 (立命館大文系) (2)また,(1)を用いて,|x|<1,|y|<1,|z|<1のとき,ry+2+y+zを証明しなさい。 (1)を活用する (岐阜経済大) (2) が (1) を拡張したような形の式を証明するときは (1) を利用して(2)を示 すことをまず考えよう. 本間 (ア)の場合,226262(イ)の場合, zyz(ry)zとして,(1)に結び つける. 2+2btc 解答 4 2 (ア) (1) (左辺) (右辺)= = {2(x²+ y²)-(x+y)²)=(xy)²≥0 1/2++ 46+20) となるから, 証明された. (2) (1)の不等式を用いると, b2+c2 (左辺)= ・+ 2 2 2 1)= 1½ (a² + b² + b² + c² ) = {(a+b)² + (b+c)"} (1)の不等式は, 02+02 0+2 2 2 ということ. a+b b+c + なお, (2) は, 平方完成で直接 a+b 2 2 a+2b+c I= y= 2 4 2' (1)を利用 (イ) (1) (左辺) - (右辺) =ry-x-y+1 =(x-1)(y-10 (x < 1, y<1だから) 示すこともできる。 16 { (左辺) (右辺)} =4(α2+262+c2)-(a+2b+c)2 =3a2+462+3c2 --4ab-4bc-2ca =462-4(a+c) b b+cとして 2 となるから, 証明された. +3a2-2ac+3c2 (2) w=xyとおくと, |x| <1,|y|<1により, |w|<1である。 よって, =4(6-a+c)²+ +2(a-c)2≥O 2 (1)を用いると,wz+1>w+z :.xyz +1>xy+z 各辺に1を加え, yz+2> (xy+1)+z 右辺に (1) を使い, ryz+2>(xy+1)+z>(x+y+z となるから, 証明された. 14 演習題 (解答はp.29) (ア) p. 9. rをいずれも正数とする. (1) XY-X-Y +1 を因数分解しなさい。 HENDER BIG (2)2+2-22-1の大小を比較しなさい . (3)2 +2 +2'320+9+r-1の大小を比較しなさい。 (イ) 次の(1),(2) を証明せよ. (龍谷大文系) (1)とき I y 1+x 1+y (2) すべての実数a,bについて, la+bl 1+a+b |a|+|6| 1+|a|+|6| (岐阜聖徳学園大) (ア) (3)では、 2D+g+r=2(D+q)+ と見る。 (イ)一般に. |a|+|0|≧|a+01 が成り立つ。 21

回答募集中 回答数: 0
数学 高校生

比例式 、サイクリックな式の本質は、 軌跡領域の逆像法でパラメータの存在条件を考える時と同じですか?

11 比例式, サイクリックな式 xy+yz+zx (ア) x+4y y+4z z+8エ 3 をみたす正の実数x, y, z について, 2+12+22 6 4 (椙山女学園大) である. I (イ) y Z y+z 2+1 このとき,この式の値は,x+y+z=0のとき x+y x+y+z=0 の (麻布大獣医) とき である. 比例式はとおく 条件式が ==形(ry:z=a:b:cを意味する比例式)で与えら abc れたときには、この分数式の値をkとおくのが定石で、こうすると計算にのせやすい。 サイクリックな式 (イ)の式の値をとおくと,r=k(y+z) などとなる.ここで, x,y,zをそれぞれy,z, xに入れ替えていくと, x=k(y+z) ⑦ y=k(z+x) ⇒ z=k(rty)..・・・・ウ となり,もう1回やると⑦⑦になる. このように,文字がグルグル回る, ア~⑦を サイクリックな式を言うが、この3式を辺ごとに加えると対称式になり,扱い易くなる. 解答 (ア) x+4y y+4z 2+8x 3 =k (k>0) とおくと, x, y, zが正により, k>0 6 4 x+4y=3k ①y+4z=6k... ②, z+8x=4k...... ③ ①によりェ=3k-4y で, これと③から z = 4k-8=32y-20k これを②に代入して, y+4(32y-20k)=6k 等式の条件は,文字を消去するの が原則 86 2 129 3 y= -k= ==k, I=3k-- 4 -k, z=4k- -k= -k 3 3 E そのままk=31 (1>0) とおいて,r=l, y=21,z=4l 大変 1-21+21-41+41.1 _2+8+4 14 2 よって, 求値式= = 2+(21)+(41) 2 1+4+16 21 23 I (イ) y 2 =k...... ① とおくと, y+z z+x x+y x=k(y+z) +42-6 2+8x-4f 1 k>o ②,y=k (z+x)...... ③, z=k(x+y)......④ ②+③ + ④により,x+y+z=2k(x+y+z) 1°x+y+z≠0のときは, これで割って,k= 1 2 2° x+y+z=0 のとき, y+z=-xとなり,①によりk=-1 注1°のとき,②③によりx-y=1/2 (y-x)となるから,r=y よって①とから,r=y=z となる. ←前文参照. 11 演習題 (解答は p.28) y+4(223-200 36 b+c c+a a+b b+c とする.このとき、 の値は (1) であり,a+b+c=0 a b C a a+b+c+6abc のときの の値を求めると (2) である. (福岡大) (b+c)a 後半は1文字消去すれば 解決する。

回答募集中 回答数: 0