学年

教科

質問の種類

数学 高校生

赤のところの標準形とは何ですか?

-2-20 xは存在し した放物線の 称 Focus 8144 ap48 ********** 蔵) x桁の自然 数より大きい数の和は、 です。 Thinkl 例題 35 平行移動・対称移動 **** 放物線y=ax²+bx+c をx軸方向に 4, y 軸方向に-2だけ平行移動 した後,x軸に関して対称移動したものの方程式が,y=2x²-6x-4 にな った。定数a,b,cの値を求めよ. ③ y=ax2+bx+c 考え方 放物線y=2x-6x-1 をどのように移動すると,もとの放物線y=ax²+bx+cに なるかを考える. そのとき, 移動の順序に注意する. 解答 放物線y=2x²-6x-4 軸方向に 4 軸方向に x軸方向に4 軸方向に 2 つまり, ………①を (i) x軸に関して対称移動し (i) x軸方向に-4, y 軸方向に2だけ平行移動 すると,もとの放物線になる. (i) ①をx軸に関して対称移動するから,yを -y におき換えて, -y=2x2-6x-4 y=-2x2+6x+4 軸に関して対称 軸に関して対称 (Ⅱ)②をx軸方向に - 4, y 軸方向に2だけ平行移 動するから, y-2=-2(x+4)+6(x+4)+4 y=-2x²-10x-2 ...... ③ 逆の移動は順序が重要 1 2次関数のグラフ つまり, よって ③ 放物線 y=ax2+bx+c より, a=-2,6=-10, c=-2 1 y=2x²-6x-4 87 y=ax²+bx+c ↓ H例量 19 第2章 y=2x²-6x-4 の逆の移動を考える. 「x軸方向 4, y 軸方向-2」 の逆の移動は 「x軸方向 -4, y 軸方向2」 であり、 「x軸に関して対称」 の逆の移動は 「x軸に関し て対称」である. 標準形にして、頂点の移動 で考えてもよい。 xをx+4,yをy-2 にお き換える. 係数を比較する. 15 e 1枚 19 ↓ 20 (2 21 22 A (9) 23 イタリ 24 125 でき

解決済み 回答数: 1
数学 高校生

写真の赤丸⭕️の部分が、いつもプラスにするのかマイナスにするのかあやふやになります、、、 どうやって見分けるのか分かりやすく教えてください🙏🙇‍♀️

84 第2章 2 次 Think 例題 33 練習 ** 33 平行移動(②2) (1) 放物線y=-x+4x+1 は放物線y=-x2-6x+7 をどのように 平行移動したものか. (2) ある放物線Cを,x軸方向に2,y 軸方向に1だけ平行移動すると、 飲物線 y=2x-3x+4 になった。 放物線Cの方程式を求めすると 考え方 (1) 頂点の移動を考える. どちらをどちらに平行移動するのかを、しっかりおさえ (2) 放物線y=2x-3x+4 を逆に, x軸方向に -2,y 軸方向に1だけ平行移動 WALL ると, 放物線Cが得られる. Focus 解答 (1)y=x2+4x+1=-(x-2)2+5 より,頂点は点 (25) y=−x²−6x+7= −(x+3)²+1651 より,頂点は点(-3, 16) 頂点(-3.16) が点(2.5)に移動するから x 軸方向に, 2-(-3)=5 5-16=-11 (2) 放物線y=2x2-3x+4... ① を逆に, x軸方向に ―2 y軸方向に -1) だけ平行移動したものが, 放物線Cである. y軸方向に だけ平行移動している. よって,x軸方向に5,y 軸方向に-11y=2x²3x+4 よって, y=2x2+5x+5 逆の移動を考える 605061 放物線C つめる。 よって、①のxをx+2, y を y+1 におき換えて, _y+1=2(x+2)2-3(x+2)+4 STOS CASERT y=2(x²+4x+4)=3x-6+3 (8) 「x軸方向にか 軸方向に g [x軸方向に 頂点の座標をます JEAN- (移動した分) (後(前) ちなよ! 軸方向に-g VJ 頂点の移動で考えて もよい. C 放物線 C' (1) 放物線y=2x²-4x-1 をどのように平行移動すると, 放物線 y=2x2+8x- になるか. (2) ある放物線Cを,x軸方向に2,y 軸方向に3だけ平行移動すると, 線y=-x²+2x+3 になった. 放物線Cの方程式を求めよ. 放物 p.92 Cor <グ 対 たすあて とす であ ので 点 京 とな

回答募集中 回答数: 0
数学 高校生

超簡単な対称移動の問題です。答えも解説も全て載ってます👍🏻👍🏻 解答1解答2があると思いますが、この答えは答える時平方完成の式でも平方完成をする前のy=ax²+bx+Cの式でも正解なのでしょうか???

例題 34 対称移動 放物線 y=x2-2x+5 を、 次のものに関して対称移動した放物線の方 程式を求めよ. (1) x軸 [考え方] x軸対称 解答2(1) (x,y) (2) y軸 Focus y軸対称 Her y) (x,-y) 解答 1 y=x²-2x+5=(x-1)*+4 (-x, y) より,頂点は点(14) で下に凸の放物線である. (1) 頂点が (1,4) (1, -4) で上に凸となる. よって, (2) 頂点が (1,4)→(-1,4) で下に凸となる. よって, y=(x+1)2+4 (3) 頂点が (1,4)→(-1, -4) で上に凸となる. よって, y=-(x+1)^-4 y=-(x-1)²-4 (3) 原点 軸に関して対称移動y を -y におき換える. -y=x²-2x+5 より. y=-x²+2x-5 (-x-y) (2) y軸に関して対称移動 x を xにおき換える. y=(-x)-2(-x)+5 より, y=x2+2x+5 (3) 原点に関して対称移動 x をx, y を -y におき換 える. y=(-x)-2(-x)+5 より, y=-x-2x-5 X 軸対称・・・ を -y におき換え ****** 原点対称 各軸や原点に関する2次関数のグラフの対称移動 ① 頂点の移動と、凹凸の変化 >例題 34 のように、 答えは標準形でも一般形でもよい。 y軸対称・・・ xをxにおき換え ****** 原点対称・・ x-xをy におき換え 2 (3) **** Exk AV 放物線y=3x-6x-7 について 次の問いに答えよ. 34 (1) x軸、y軸, 原点に関して対称移動した放物線の方程式をそれぞれ求めよ。 に関して対称移動した放物線の方程式

未解決 回答数: 1
数学 高校生

放射物y=-xの二乗を平行移動したものということと、2時の係数が-1ということは何が関係しているんですか??

1 2次関数のグラフ 9 例題 38 2次関数の決定(3) **** 放物線 y=-x2を平行移動したもので,点(1,3)を通り,頂点が直線 y=2x+1 上にある放物線をグラフとする2次関数を求めよ. [考え方 与えられた条件を整理すると,次のようになる. (i) 放物線y=-x2 を平行移動したもの (i) 点 (13) を通る Los Mon () 頂点が直線 y=2x+1 上にある 125 (2x20) 6+x=x (8) ()より,頂点に関する条件→標準形 y=a(x-p+g の形で考える. 頂点のx座標を すると, 頂点は直線y=2x+1 上にあるから、頂点の座標を(p,2p+1) とおく. (i)より, y=-x2を平行移動しているので、求める2次関数のx2の係数も -1 となる. 解答頂点が直線 y=2x+1 上にあるから, 頂点の座標を 1 (21) おく. 頂点(b,g) は, 直線 放物線y=-x2を平行移動したものなので,2次の係数 y=2x+1 上にある ので,g=2p+1 と (卵は-1だから, 求める2次関数は, xD)²+2p+x+x+x. (S) おける. 点(1,3)を通るから |x=1, y=3 を代入 +3=-(1-p)²+2p+1R 41023 p2-4p+3=0 より, p=1,3 の出 p=1のとき, y=-(x-1)2+3 p=3のとき, y=-(x-3)2+7 よって、求める2次関数fx y=-(x-1)2+3 またはy=-(x-3)2 +7 YA y=2x (火 注〉 例題 38 の条件を満たす放物線は右の図のように ) 2 つ存在する. 7 Think 3 1 (1,3) 3

未解決 回答数: 1
数学 高校生

(1)の問題で準線がなぜx=-1になるのかが分かりません。焦点の-1倍したものが準線なのでx=1ではないのですか?

Lin p 0 5。 次の問いに答えよ。 15 焦点は(0, 1),準線は ェ=-1 (2) A(焦点)からェ軸(準線) におろした垂線の足 は原点で、OAの中点(0, 1) が来める放物線の頂 点。 A2 軌跡の方程式を求めよ。 よって、求める放物線をy軸の正方向に -1年け 平行移動した放物線は、 放物線については,次の知識が必要です。 (定義) 定点Aと定直しまでの距離が等し い点Pの軌跡。 O 4py=エ(p>0) と表せる。この放物線の焦点は(0,1)だから 精講 サいいちゃ(a)tt スウ形1とな。 p=1 4y=ェ よって、求める放物線は 4(y-1)=く 放物線は,だ円や双曲線に比べて焦点や方程式が求めにくいので すが、ポイントにかいてあることをしっかり頭に入れておけば大丈夫 (Aを焦点,7を準線という) (標準形)(主軸工軸) 4pr=y°(pキ0)で表される図形は放物線で *頂点は(0, 0) *焦点は(b, 0) 注 トい A です。 =ーP のポイント 放物線において *準線は x=-p *放物線上の点(i, y) における接線の方程式は 2p(z+z))=Vy I.方程式から焦点や準線を求めるとき 「2乗の項の係数=1」を保ちながら標準形へ II.焦点や準線から方程式を求めるとき まず,頂点を求め、それが原点に移るような 解 答 平行移動を考える 2.ェ=y°+2y = 2.z=(y+1)?-1 = 2ェ+1=(y+1)? =2(z+-)=(y+1)? 2 一+)-+1 演習問題5 放物線 C:y=がある。 Pスgの形にする ここで,のをェ軸の正方向に (1) 焦点Fの座標と準線1の方程式を求めよ。 (2) C上の点P(t, t') (tキ0) と焦点Fを通る直線mの方程 2? 9軸の正方向に1平行移動すると, めよ。 4ォーとなり,この放物線の焦点は(,0), 準線は (3) t>0 のとき,直線MとCのP以外の交点をQとする 1 座標をtで表せ、 ー=ア 2 (4) 線分 PQの長さをむで表せ、 (5) 線分 PQの長さの最小値を求めよ。 よって,Oについて

回答募集中 回答数: 0