学年

教科

質問の種類

数学 高校生

問い2、3がわからないため、教えていただいきたいです。問1の答えは6<k<3分の22になりました。

令和4年度 数学Ⅰ このパフォーマンス課題は以下のルーブリックに従って評価します。 ①~③は問題番号に対応しています。 A B 0 3つの条件をして解き の値の範囲を求めることが できた。 3つの条件を立式することが (2) 整数kを代入した2次方程式 必要な条件を立式して解き、 解き 根拠とともに正しく結論を 解が4より大きいことを示導くことができた。 すことができた。 整数kを代入した2次方程式 必要な条件を立式すること を解くことができた。 ができた。 できた。 3つの条件を立式しようとし 整数を代入した2次方程式 必要な条件を立式しようと を解こうとした。 した。 A: 2次方程式を解きすぎて極めてしまったなあ。 B : それじゃあ2次方程式の解を一緒に配置してみようよ。 A:へえ, 面白そう!!!! どうやるの? B : 例えば、次のような問題を考えたよね。 (教科書p116類題) ②次方程式x2mx+m+6=0が0より大きい異なる2つの解をもつような 定数の値の範囲を求めよ。 (解説) f(x)=x²-2x+m+6とすると 2次方程式f(x)=0が0より大きい異なる2つの解をもつ ための条件は,放物線y=f(x)がx軸の正の部分と, 異なる2点で交わることである。 これは,次の [1]~[3] が同時に成り立つことと同値で ある。 f(x)=(x-m)²-m²+m+6 [1] x軸と異なる2点で交わる [2] 軸がx>0 の部分にある [3] y軸 (直線x=0) との交点のy座標が正 すなわち [1] f(x)=0 の判別式をDとすると D -=(-m)²-(m+6)=m²-m-6>0 m+6 712 -6 x=m これを解いて <-2,3<m ...... ① [2] 放物線y=f(x) の軸は直線x=mで, この軸について m > 0 ...... ② [3] f(0) > 0 から m+6>0 よって m> -6 ③ ①, ②, ③ の共通範囲を求めて m>3 A: そういえばこんな問題あったね。 B : この考えを活用して、 次の問題を考えてみよう。 A:さっきの[1]~[3] の条件はどう変わるかな? 11 2次方程式x^2kx+5k+6=0…☆ が4より大きい異なる2つの解をもつような 定数kの値の範囲を求めよ。 -20 3 V [A[2]と[3]が少し難しかったけれど,何とかの値の範囲を求めることができたよ。 B: さすがだね。 でも, 本当にkの値がこの範囲にあるとき 2次方程式☆は 4より大きい異なる2つの解を持つのかな? A : 実験してみよう! B: 唐突だけれど, √2 = 1.4142・・・ だから, V2 < 1.5 だよね。 2上で求めたの値の範囲を満たす整数kを, 2次方程式に代入して解け。 また, その解が4より大きいことを示せ。 m A : √ が出てきて少し困ったけど、確かに2つの解は4より大きいね。 B : 本当だったね。 同様に考えれば, あらゆる数について, より大きい異なる2つの解をもつような定数kの値の範囲を求められるのかな? A 6で実験してみよう! 3 2次方程式x2-2kx+5k+6=0…..☆ が6より大きい異なる2つの解をもつ場合はあるか。 | ある場合もない場合も理由を述べよ。 AB: へえ,こうなるんだ!

回答募集中 回答数: 0
数学 高校生

この問題が(1)から分からないので詳しく教えてほしいです

ず。 <設問別学力要素> 大間 分野 内容 13 数列 大問 小間 →解答 Ⅱ型 6 解答 参照 解説 Ⅱ型 6 解説 参照 ④4 微分法 【III型 必須問題】 (配点 【配点】 (1) 28点. 2304 (2) 12点 40点 (1) (2) (3) 配点 8 とする. 以下において, lim- x-00 《設問別学力要素》 分野 内容 16 16 出題のねらい 群数列の規則性を理解し、 第k群の末頃まで の項数, 第k群に含まれる項の和を求めること ができるか, さらにそれらを利用して, 条件を満 たす項が第何項か、 および, 条件を満たす項の和 がどうなるかを求めることができるかを確認する 問題である. 4 微分法 f(x)=x2+ax-axlogx (aは正の定数) 10gx=0であるこ 知識 技能 O とは用いてよい. (1) f(x) が極値をとるxの個数が2であるよう なαの値の範囲を求めよ. (2) a=²のとき, f(x) の極小値を求めよ。 40点) 40年) 画 #033410 (1 配点 小問 配点 40点 (1) (2) 28 12 思考力 判断力 O 知識 技能 -S=(x)) 表現力 思考力 判断力 O O 表現力 出題のねらい 導関数を利用して関数の増減を分析することが GTD d できるかを確認する問題である. ◆ 解答 (1) f(x) の定義域は x>0 である.まず, 2 f(x)=x2+ax-axlogx, f'(x)=2x+a-a(logx+1) - 33 f"(x)=2-a x 40 であるから,f'(x) の増減は次の通り。 a (0) (∞) 2 0 f" (x) f'(x) さらに, x→+0 =2x-alogx, limf'(x)=8, x100 2x-a limf'(x) = limx2-α・ O x80 8 2015 =8 である. ここで、f(x) が極値をとるxの個数が2と なるのは,f'(x) がちょうど2回符号変化する ときであり,それは y=f'(x) のグラフが次の ようになるときである. + 2 よって, 求める条件は logx y=f'(x) () <0. に着目して万物 a-alog // <0. log>1. a> 2e. (2)a=²のときは α > 2e が成立するので, の場合に該当し, y=f'(x)のグラフは次の り。 ただし,x軸との共有点のx座標を B(a <B) とする。 (x) g(x) + (x)u(x) \ = '[(2)x(z)).

回答募集中 回答数: 0
数学 高校生

下の問題の目の積が6の倍数になる場合の解き方を教えてください。

5 基本例題(全体)・・・でない)の考えの利用 | 大, 中, 小3個のさいころを投げるとき, 目の積が4の倍数になる場合は何通り [東京女子大] あるか。 指針「目の積が4の倍数」を考える正攻法でいくと、意外と面倒。そこで、 (目の積が4の倍数)=(全体) (目の積が4の倍数でない) として考えると早い。 ここで,目の積が4の倍数にならないのは,次の場合である。 [1] 目の積が奇数→ 3つの目がすべて奇数 [2] 目の積が偶数で, 4の倍数でない→偶数の目は2または6の1つだけで、他の 2つは奇数 CHART 場合の数 早道も考える わざ (A である) = (全体)(Aでない)の技活用 目の出る場合の数の総数は 6×6×6=216 (通り) 解答 目の積が4の倍数にならない場合には,次の場合がある。 [1] 目の積が奇数の場合 3つの目がすべて奇数のときで 3×3×3=27 (通り) [2] 目の積が偶数で、4の倍数でない場合 3つのうち,2つの目が奇数で,残りの1つは2または 64が入るとダメ。 の目であるから ( 32×2)×3=54 (通り) 積の法則 ( 63 と書いても よい。) 奇数どうしの積は奇数。 1つでも偶数があれば 積は偶数になる。 [1],[2] から,目の積が4の倍数にならない場合の数は遺 27+54=81 (通り) 和の法則 よって、目の積が4の倍数になる場合の数は 216-81=135 (通り) (大,中,小) = (奇数、奇数, 2または 6 ) =奇数 2または 6,奇数) = (2または 6, 奇数, 奇数) (全体) (…でない) OOON (ON) -1)(³S+S+1) 目の積が偶数で、4の倍数でない場合の考え方 上の解答の [2] は,次のようにして考えている。 検討 (1) 大,中,小のさいころの出た目を (大,中,小) と表すと、3つの目の積が偶数で,4の倍 にならない目の出方は,以下のような場合である。 3×3×2 通り 3×2×3通り 2×3×3 通り よって (×2)×3通り 参考目の積が4の倍数になる場合の数を直接求めると、次のようになる。 (i) 3つの目がすべて偶数→ 3°通り 合わせて (ii)2つの目が偶数で、残り1つの目が奇数→ ( 32×3)×3通り ( 1つの目が4で、残り2つの目が奇数 → (1×32)×3通り」 27+81+27 =135(通り) 練習大, 中, 小3個のさいころを投げるとき、 次の場合は何通りあるか。 ③9 ) 目の積が3の倍数になる場合 目の積が6の倍数になる場合 P.357 EX8

回答募集中 回答数: 0