学年

教科

質問の種類

数学 高校生

例題13を用いて119番をやるのですが答えを見てもわかりません

第2章 集合と命題 113 n は自然数とする。 次の命題の裏を述べよ。 p.76 (1) 四角形 ABCDが長方形ならば, 四角形 ABCD は平行四辺形である、 (2) n2 が奇数⇒nが奇数 *114 n は整数, a, b は実数とする。 次の命題を証明せよ。 (1) n2+1が奇数ならば, nは偶数である。 (2)2a+360 ならばα > 0 または6>0である。 p.77 *115が無理数であることを用いて、次の数が無理数であることを証明せよ (1) 2-√√2 B問題 116 背理法を利用して,次のことを証明せよ。ただし,a>0 とする。 (1) αが無理数ならば, α は無理数である。 (2)が無理数ならば √3-√2 は無理数である。 *117 (1) n は整数とする。 次の命題を証明せよ。 ☑ n2が3の倍数ならば, nは3の倍数である。 p. 78 9 (2)背理法を利用して,3が無理数であることを証明せよ。教p.79 例題 無理数と有理数 a,bは有理数とする。 3 が無理数であることを用いて,次の命題 13 を証明せよ。 第2章 集合と命題 39 118 a, b は有理数とする。 6 が無理数であることを用いて,次の命題を証明 ☑ せよ。 √2+√36=0a=b=0 *119 次の等式を満たす有理数 g の値を 例題13の結果を用いて求めよ。 (1)(3+√3)-(2-√3) g+1-4v3=0 (2) √3-1+3=1 発展〉 「すべて」 と 「ある」 の否定 命題とその否定 命題とその否定について, 次のことが成り立つ。 pはxに関する条件とする。 命題「すべてのxについて」の否定は「あるxについて 命題「ある x につい否定 「すべてのxについて 問題 ある CONNECT 6 「すべて」 と 「ある」 の否定 次の命題の否定を述べ, もとの命題とその否定の真偽を調べよ。 (1) すべての素数nについて, n は奇数である。 (2) ある実数xについて x2≦0 a+b√3=0a=b=0 この命題は直接証明することが難しい。 よって、背理法を利用して証明する。 まず, b=0 と仮定する。 b よって 解答 6≠0 と仮定すると √3=- a b a は有理数であるから,この等式は、が無理数であることに矛盾する。 b=0 b=0のとき a030から a=0 したがって, 命題は真である。 【?】 a+bv3=0を 考え方 「すべて」 と 「ある」 を入れ替えて結論を否定する。 命題とその否定では,真 偽が逆になる。 解答 (1) 否定は 「ある素数nについて, n は偶数である。」 2は素数であり, かつ偶数であるから,否定は真である。 否定が真であるから,もとの命題は偽である。 (2)否定は 「すべての実数xについてx>0」 x=0のときx2=0 となるから, 否定は偽である。 否定が偽であるから,もとの命題は真である。 120 次の命題の否定を述べもとの命題とその否定の真偽を調べよ。

未解決 回答数: 1
数学 高校生

⑵において x=-2で不連続にはならないのですか?

10 重要 例題 57 級数で表された関数のグラフの連続性 x x x 無限級数 x+ 1+x (1+x)2 + ++ について (1+x)-1 00000 (1)この無限級数が収束するようなxの値の範囲を求めよ。 (2)xが(1)の範囲にあるとき,この無限級数の和を f(x) とする。 関数 y=f(x) のグラフをかき, その連続性について調べよ。 a=0 または |r|<1 基本 36,56 指針 無限等比級数atar +are +.....の収束条件は a 収束するとき, 和は a = 0 なら 0, αキ 0 なら 1-r (2)まず, f(x) を求める。 次に, グラフをかいて,連続性を調べる。 なお,関数 y=f(x)の定義域は,この無限級数が収束するようなxの値の範囲[(1) で求めた範囲] である。 (1)この無限級数は,初項 x, 公 解答 比 の無限等比級数である。 1+x 収束するための条件はx=0 ■ ( 初項) = 0 ↓では ・1 O x または-1<x<1 ... ① -1<(公比)<1 ない! ・1 不等式① の解は, 右の図から x<-2,0<x 1 <y= 1 1+x のグラフと y= 1+x よって, 求めるxの値の範囲は x<-2,0≦x (2) 和について x=0のとき f(x)=0 x<-2,0<xのとき 直線 y= 1, y=-1の上 下関係に注目して解く。 なお, ① の各辺に (1+x) (0) を掛けた -(1+x)²<1+x<(1+x)² を解いてもよい。 (初) 1 - (公比) -2-10-(mil y=1+x x 連続性は定義域で考える ことに注意。 −2≦x<0 f(x)は定義されない から,この範囲で連続性 を調べても無意味である x f(x)= =1+x 1. 1- 1+x 関数 y=f(x)の定義域は 0 x<-2,0≦xで, グラフは右 の図のようになる。 よって x<-2,0<xで連続; x=0で不連続 練習 次の無限級数が収市す 91-2はちがうのか? f(r)のグラス

未解決 回答数: 1