学年

教科

質問の種類

数学 高校生

数列の問題です 右の緑マーカーを引いているP1=2/5ってどうやって出すんですか??

例題 B1.51 漸化式と確率 ( 2 ) **** ら1個の玉を取り出し、数字を調べて袋へ戻す。 この試行をn回続けて 袋の中に1から5までの数字を書いた5個の玉が入っている. この中か 得られる他 答えよ。 2個の数字の和が偶数である確率を とするとき 次の問いに (1) Pr+1 をPm で表せ (2) pm を求めよ . 第8章 回目 の 考え方 (1) (n+1) 個の数字の和が偶数となるのは、 解答 ・ (慶應義塾大改) おも (i)回目までの数字の和が偶数で, (n+1)回目も偶数 回目までの数字の和が奇数で,(n+1)回目も奇数 の2つの場合が考えられる. (2)(1)で求めた式 (漸化式) から " を求める。 (1)(n+1)回の試行で,(n+1)個の数字の和が 偶数となるのは, 2回の試行での数字の和が偶数で (n+1)回目 も偶数の場合か、 wwwwwww wwwww 回の試行での数字の和が奇数で (n+1)回目 wwwwwww n 割っ も奇数の場合である。 (偶数)+(偶数) (偶数) (奇数)+(奇数 偶数) 数 2 できか ) wwwwww よって, 2 +(1-pn) +1=5 www (2) (1)より. Pn+1 2 5 15 3-5 1 は, n個の数字の和が 奇数である確率(余事象) 特性方程式 したがって、数列{po-12 初項 1 121 公比・ 25 2 10' の等比数列だから, n-1 10 2 5 よって | Focus 3 α= + より、α 2 初 公比rの等比数列の 一般項は a=ar"- n回目と(n+1)回目の試行に注目して漸化式を作る B151 袋から,それぞれ1個ずつ玉を取り出したとき, 赤玉が奇数個取り出される確 n個の袋の中に, それぞれ赤玉が1個, 白玉が9個入っている. これらn個の 練習 *** 率をとオスと次の問いに答えよ. (改)

解決済み 回答数: 1
数学 高校生

数Bの数列の問題です 真ん中らへんの緑マーカーの4はどこにいったんでしょうか?

例 題 B1.34 考え方) Un+1=pan+f(n) (p≠1) **** =3, an+1=3an+2n+3 で定義される数列{an}の一般項 αを求めよ. [答] 漸化式 an+1=3an+2n+3 において,を1つ先に進めて+2 と α+)に関す ある関係式を作り, 差をとって,{anti-an}に関する漸化式を導く 答 2α に加える(または引く)nの1次式pn+g を決定することにより、 {an+pn+g}が等比数列になるようにする。 10+1= 30+2n+3 ・・① より、 ante = 3an+1+2(n+1) +3 ...... ② に ①より、 mimi www www an+2-an+1=3(anan)+2l bantiman より, とおくとか考休み、 b=a-a=3a,+2+3-q=11 b+1=36+2, b₁+1=12 bw+1+1=3b"+1), したがって、数列{6m+1} は初項 12, 公比3の等比数列 だから, bm+1=12.3" =4・3" b=4.3"-1 n2のときの係数) n-1 ②は①の を代入したもの +1 差を作り”を消去 する ①より. a2=3a,+2+3=14 α=3α+2 より +m+α=-1 12.3" =4・3・3"-1 (1 12(3"-1-1) =4.3" k=1 カ=-1 3-1 (n-1) n-1 a=a+b=3+Σ(4-3-1)=3+ k=1 第8章 =6・3"-1-n-2=2.3"-n-2 n=1のとき, a1=2・3′-1-2=3より成り立つ。 よって, an=2・3"-n-2 6.3"-12・3・3-1 =2.3" 十四十 n=1のときを確認 2pg を定数とし, an+1+p(n+1) +q=3(a,+pn+g) とおくと an+1=3a+2pn+2g-pおけば an+1+pn+p+q 23=3a + 3pn +3q = もとの漸化式と比較して、 2p=2, 2g-p=3より、p=1,g=2 したがって,att(n+1)+2=3(an+n+2) 4+1+2=6=34.+2pn より,数列{am+n+2}は初項 6, 公比3の等比数列 an=2.3"-n-2a=3 an+1=pan+f(n) (f(n)はnの1次式) 差を作り, n を消去して階差数列を利用して考える +2q-p よって,an+n+2=6・32・3" より Focus 注) 例題 B1.33 (B1-63) のように例題 B1.34 でも特性方程式を使うと, α = 3α+2 +3 よ 3 ant h₁ α=-n-2 3 となる. これより, 順番になっていない と変形できるが, 等比数列を表していないので、このことを用いることはできない. +2 注意しよう [[[]] [Bl 解説参照) よって定められる数列{am}に R1

解決済み 回答数: 1