学年

教科

質問の種類

数学 高校生

<1>(2)の線を引いたところをどこから導いたのか、<2>(1)の考え方を解説お願いします🙇🏻‍♀️書き込みは無視してください

数学Ⅰ・数学A 第4問 (選択問題) (配点20) 〔1〕 (1) 不定方程式 と表せる。 第3問~第5問は,いずれか2問を選択し、 解答しなさい。 (2(x-8)-19 (2-3) ₂0 (2) 整数 s, tを用いて ウエ s+ 2= 12x-19y=1 を満たす整数x,yの組のうち、 xが正で最小になるものは x= ア y= イ であるから,この不定方程式の整数解はんを整数として x= ウエ k+ ア y=オカ k+ イ と表せる。 x-8=19k 27. 46 tuakts osi = オカ t+ 12.24 36 4860728496 1938577695 ア と表せる整数zについて考える。 このように表せる整数のうち, 正で最小のものはキクである。 また, このように表せる整数zをすべて求めると, uを整数として z= ケコサu+ キク 29 84 549 塩 イ A ? (4 x4 736 (数学Ⅰ・数学A 第4問は次ページに続く。) 7° 1977 10198 730 105 416 62 38 57 + & t& 数学Ⅰ・数学A 〔2〕 自然数Nは7進法で9桁で表されるとする。 Nを7進法で表したときに, *上から3桁ずつ区切って得られる数を順にa,b,c とする。 たとえば,N=123456012 (7) とするとa=123(n)=66,6=456=237, c=12 (7)=9である (1)a+b+cが2の倍数であれば, a,b,cの値にかかわらずNは2の倍数 であることを証明しよう。 まず, Nはa,b,c を用いて 図+6×7 N=ax70 +c と表せる。 また仮定より, 整数dを用いて a+b+c=2d と表せる。 このこ とから N=2{d+ センタ (344a+b)}る となるので, Nは2の倍数である。 DAS (2) (1) の証明と同じ方法を用いると, a+b+cが2以外の倍数のときでも, 同じ方法で倍数を判定できるものがある。 を2以上の整数として,次の命題を考える。 OPI ・命題 a+b+cmの倍数であれば, a, b,cの値にかかわらずNはmの 倍数である。 I 命題が真となるようなmのうち, 素数であるものはm=2, ツテである。また, 命題が真となるような2以上の整数mは, (1) で証明し たm=2のときも含めて, 全部でトナ個ある。 27 チ

回答募集中 回答数: 0
数学 高校生

(3)について詳しく教えてください。お願いします。

(注) この科目には、 選択問題があります。 第1問 (必答問題) (配点30) [1] 関数 について考える。 (1) (4) f(x)=2sin 2x-√2 cos(x+4) TU 2-52.0 ア である。 である。 (2) 0≦xの範囲におけるf(x) の最大値を求めよう。 加法定理と2倍角の公式より cos(x+4)= di cas スン イ ウィ R ① sin2x= I2 sinx cos x 2.zaina cosa -√2. = (5x –je). である。よって, t = cosx-sinx とおくと、f(x)は4qincoil -ラージウス) f(x)=オカt-t+キ -55x+cosic √ris (1732) 元 7-91326. 504 4. cos —(cosx−sinx) となる。ここで,0≦x≦πであるから,①よりのとり得る値の範囲は 4 ク ケンsts ~21²²-² +2 レオ 2 である。したがって, 0≦x≦xの範囲におけるf(x) の最大値は サシ 2 (1^²) * オ -21²-11² (4-1) * ²-1-29141²5 +²= 1 = -25₁11054 (数学ⅡⅠ・数学B 第1問は次ページに続く。) (3)の範囲において, f(x)=1を満たすxの値は π t である。 ただし,αは 0<a< を満たす角である。 O α, N ⑩ の解答群 -4 -1-√7 4 π セ π かつ sina= 0-1/32 ② 42-47.. 1²-24² - 4+2 = 1 Gislut & x) = | 1 + ) {3^+^)~* 1=-1₁ 2054-931 (=-1₁& -1+√7 4 オンブル 21 -√2 R {[(x + 7 + 1 = みに ZnG erfarin. mze-ze, ze 1 ソ 1 6 4 1-√7 (3 第1回 1 3 1+√7 4 (数学ⅡI・数学B 第1問は次ページに続く。)

回答募集中 回答数: 0