学年

教科

質問の種類

数学 高校生

画像の青線部分なのですが、どうして最後の式に辿り着くのかわかりません

m 5-4 (ii) 思考力・判断力 道しるべ (C) 200- 数が連続するカードの組を含まないような4枚の カードの取り出し方を考える. 取り出した4枚のカードの中に,数が連続するカードの 組が少なくとも1組含まれるような取り出し方は, カード の取り出し方の総数から,数が連続するカードの組を含ま ないような4枚のカードの取り出し方を引いたものであ る. 数が連続する組を含む場合 は, 4枚連続する組を含む, 3枚のみ連続する組を含む, 2枚のみ連続する組を1組だ け含む, ・4枚連続する組は含まれず, 2枚のみ連続する組を 2 組含 そこで,数が連続するカードの組を含まないような4枚のいずれかである。これらの総 のカードの取り出し方を考える。 ~35) 和を直接求めるのは大変である から,その補集合である 「数が 連続するカードの組を含まな い」ような4枚のカードの取り まず, x<y を満たす整数x,yに対して、出し方を考える x <y<y+1 210 であり,xとyが連続する2整数であっても,xとy+1 は連続しない . 同様にして, x<y<z<w (C) を満たす整数x, y, z, w に対して, x<y+1<z+2 <w+3 であり, xとy+ 1, y +1 と z +2, z+2とw+3は連 続しない。 <- (たとえば, よって, 数が連続するカードの組を含まないような4枚}(x,y,z,20)=(1, 2, 9, 10) のとき, のカードの取り出し方は, (x, y+1,z+2,w+3)=(1,3,11,13) となるから、取り出した4枚は, ♡ ♡ 1≦x<y+1<z+2<w+3≦ を満たす整数x, y +1, z+2, w+3 の組 (x, y+1,z+2, w+3) の個数, すなわち、 1≦x<y<z<w≦10 を満たす整数x,y,z, wの組 (x,y,z, w)の個数に等し い。 このような組合せは、1から10までの異なる10個の 整数から4個の整数を取り出して, 小さい順にx,y,z, 01S=(3) wに当てはめればよいから, 取り出し方は, A 3 J K となり,数が連続したカードの 組を含まないOS 10.9.8.7 10C4= 4・3・2・1 =210(通り).

未解決 回答数: 1
数学 高校生

❓マークがついているところで、 2b-aとgが〜から、g=1になるところがわかりません。 教えてください。

第4問 整数の性質 【解説】 (1) P 27+31 2n+1 (2n+1)+30_ 2n+1 + 30 2n+1 Pが整数となるのは, 2n+1 が30の約数のときであるから, 2n+1 (nは正の整数) が3以上の奇数であることを考慮すると、 2n+1=3,5, 15. ②x2- 2n+2=26g - 2n+1= ag 22m²+78m+56 R= (n+m)(2n+1) nmは整数であるから,Rが整数のとき、 Q-(n+m)R このときの値は(3)より, も数である よって、 1 = (26-a)g なる。 であり,それぞれのの値に対して, Rの頃は次の表のように 1,2,4,7,22 n= 1 1 n 1 2 4 7 22 (2) 2n+1 a b を用いて、 +1 は、 最大公約数および互いに素な正の整数 とすことができる。 ②x2-(より, [2n+1=0. n+1=bg 2 b-ag= 2b-a とgはともに整数であり, g≧1 であるから, 52 60 R 80 112 276 m+1 m+2 m-+-4 m+7m+22 ... a また, n=1,2,4,7,22のそれぞれの額に対して,m=0 の ときのRの値は次の2のようになる。 2 n 1 2 47 22 R 52 30 20 16° 138 11 g= 2③ したがって,m=0 のとき,Rがとり得る異なる整数値の総和 は、 (3) 22m²+78n+56=(n+1 (22n+56 56-11=45 =(n+1){11(2n+1)+ 45 52+30 +20 +16 118 以下,60 とする. n=1のとき, m +1≧61 より より, 22m² +78n+56 Q= 2n+1 2ntlentli 互いに素だから 割りきれない. (n+1)(11(2n+1)+45} 2n+1 (+1)(1+ 45 2 2n+1 2n+1 =11(n+1)+45(n+1) ここで, (2) より 2n+1 と n+1 の最大公約数は1, すなわち, 21n+1 は互いに素であるから, Qが整数となるのは, 2n+1 が45の約数のときである。 2n+1 が3以上の奇数である ことを考慮すると, すなわち 2n+1=3,5, 9, 15, 45 n=1, 2, 4, 7, 22. よって, Qが整数となるの値は全部で5 個ある。 m+1 <l すなわち <R<1 であるから, Rは整数ではない、 n=2のとき,m+262 より 0<- m+2 であるから, Rは整数ではない. くすなわちくR<1 n4のとき、 80 m+4 が整数となるのは、+4 が 80 の約 のときである+464であることを慮すると、 m+480 すなわちm=76. 7のとき、が整数となるのは、+7 が112の約 数のときである。 767 であることを考慮すると、 m m+7=112 すなわちm=105. n=22 のとき,mmが整数となるのは、+22276(火 約数のときである、+222であることを考慮すると、 -26- -27-

解決済み 回答数: 1