学年

教科

質問の種類

数学 高校生

【三角関数】 (オ)についてです。 答えが③になる理由がわからないです。 問題文からわかるのですか? それとも基本事項ですか?

数学B・数学C (注)この科目には、選択問題があります。(3ページ参照。) での三角比の合成 第1問(必善問題)(配点 15) 紅学・学 数学Ⅱ・数学B 数学 C ウ の解答群 太郎さんは三角関数のある問題の解法の解説を読んで,自分で応用を考えてみる ことにした。 百 3π 2 ①π ② ③ 2π 2 太郎さんは方程式 sin 6. +- =cosxx の解について考えてみることにした。 I の解答群 (1)太郎さんはたとえば="を代入すると水の左辺はア ,右辺は イ sinasin β ① sin a cos β となり一致しないことを確かめた。 また,他に幾つかの値を代入してみたが を満たすxの値はみつからなかった。 sin (bit ④ 2sin asin / ⑤ 2sin a cos B cos asin ẞ ⑥ 2 cosasin β ③ cosacos β ⑦2 cos a cos B 3_ で イ の解答群 6 O 1 /3 ① √2 ② ③ 2 ④ 0 2 (5) ⑥ √2 2 √3 ⑦ ⑧ -1 2 (2)太郎さんは先に読んだ解法にならって次のように考えた。 一般に cos x=sin( ウ -x) (3)太郎さんは別の解法についても考えてみることにした。 太郎さんは一般に inA=sin B のとき, A=オであることに着目し, A=6x+7 B= ウーと考えることでも方程式を解けることに気がついた。 B+zu オの解答群 ⑩ B+nπ (n は整数) ① B+2n (n は整数) ②B+mπ, π-B+nπ (m, n は整数) ③ B+2mπ, π-B+2nπ (m, n は整数) sin ( Sin であるから, 方程式の解は方程式 sin(6æ+/)=sin(ウ-x)…の解 である。 一般に sinxcospt cosin カ (4) 方程式の正の最小の解はx= π,正の小さい方から2番目の解は sin(α+β)-sin(α-β)= H {rindcosp+ cosasige) キク O ケ である。よって, α+3=6x+a-B= ウ 3' -x から α, β を求め, x= πである。 また, 方程式 Xの 0≦x<2である解はシス 個ある。 コサ エ =0に着目することで方程式 すなわち方程式を解くことができる。 (数学Ⅱ・数学B 数学C第1問は次ページに続く。) sin (6x+1)= = 105 x. sx= sin(x) ze 2 cosa sing x-13=6x+3 x- 6 α = 2 cos (2x+27) d-= -x. ( E * + 2 -5- -4- 2d=5x+ x + 6 12 x -x

解決済み 回答数: 1
数学 高校生

2024本試験-5 イウについてなのですが、確かに問題文の初めで比は与えられているのですが、それをそのまま使っても良いのですか? 別の線だから、比は同じでも元の長さは違うからとか考えなくてもいいのですか? 2枚目以降の写真は別の問題なのですが、この時、比をそのまま使っては... 続きを読む

第3問~第5問は、いずれか2問を選択し、解答しなさい。 28・15 200表示さ 第5問 (選択問題(配点 20 図1のように, 平面上に5点A, B, C. D, E があり, 線分AC, CE, EB, ED. DAによって、星形の図形ができるときを考える。 線分ACとBEの交際 P.ACとBD の交点をQ, BD と CEの交点をR, BE の交点をT とする。 CEの交点をDとCEの文 A11 E 10 ここでは B R × 図 1 TAT (1) AQD 直線 CE に着目すると 2024年度 本試験 数学Ⅰ・数学A 29 =SEとな AP 22/13 ANE E SET QR DS =1 Q RD SA CQ 3 AD と R が成り立つのでの水 (1) と表示され 同じものを選んでもよい QR: RD イ: 3 ** DA JE R となる。 また, △AQD と直線BE に着目すると #00 0801 =82 00 DAT QB: BD D エ : オリ ① 100 DA となる。 したがって編 BQ QR RD = エ : イ となることがわかる。 ア の解答群 AP:PQ:QC=2:3:3, AT : TS: SD = 1:1:3 AC ① AP ②AQ (3 CP を満たす星形の図形を考える。 以下の問題において比を解答する場合は, 最も簡単な整数の比で答えよ。 (数学Ⅰ・数学A第5問は次ページに続く。) 問3A学1年) 土 X DX .0 e ④PQ (数学Ⅰ・数学A 第5問は次ページに続く

解決済み 回答数: 1