学年

教科

質問の種類

数学 高校生

数Ⅰデータの分析の質問です。 1枚目の表(ⅰ)、表(ⅱ)にある数学、国語のテスト結果の度数、相対度数から2枚目の表(ⅲ)、表(ⅳ)にある結果はどのように導けるか教えてください🙇🏻‍♂️ 数学が80点以上かつ国語が80点以上がなぜ48人であり9.6%となるのか分かりません よ... 続きを読む

◆データの分析の補足◆ 2 元表を利用しよう! ある高校で,500人の生徒にある数学と国語 (現代文) のテストを行った。 このテストについて, 表 (i) 数学のテスト結果 A:80点以上, A:80点未満 数学 A ((i) 数学で, 80点以上の生徒達をA, 80点未満の生徒達をĀとおき,また, (i) 国語で, 80点以上の生徒達をB, 80点未満の生徒達をBとおいて, それぞれの人数を調べて集計すると,次のような表 (i) (ii) の結果が得られた。 ここで,AAを,それぞれ数学が 得意な人達と不得意な人達とし, B とBもそれぞれ国語が得意な人達 と不得意な人達と分類することにす ると,表(i) から, 数学が得意な度数 人は全体の20%で, 不得意な人は 80%であることが分かる。 同様に 表 (ii) から, 国語が得意な人は全体 の40%で,不得意な人は60%であ ることが分かるんだね。 100 400 相対度数 20% 80% 表 (ii) 国語 (現代文)のテスト結果 B:80点以上, B:80点未満 国語 B B でも,このように数学と国語のデ ータを個別に見ている限り, これだ けで終わってしまうんだけれど,学 校側には,各生徒の数学と国語のデ 度数 200 300 相対度数 40% 60% ータは共にそろっているので、この2つのデータを併せて,集合論で学んだ n(A∩B), n(A∩B), n (A∩B), n (A∩B) を,次の表 (ii) や (iv) のような形 数学と国語 数学が得意で 数学が不得意 数学と国語が が共に得意 国語が不得意で国語が得意 共に不得意な な人の人数な人の人数 人の人数 で表すことができるんだね。 250 人の人数

解決済み 回答数: 1
数学 高校生

❌って書いた5のとこが、多分2になるんですけど、どうしても5になります、 どこが違うか教えてほしいです。

19 43つの集合の要素の個数 (1) 00000 |100人のうち, A市, B市, C 市に行ったことのある人の集合を,それぞれA B, C で表し, 集合Aの要素の個数を n (A) で表すと, 次の通りであった。 n(A)=50, n(B∩C)=10, n(B)=13, (C)=30,n (ANC)=9. n(ABC)=28 n(A∩BNC) = 3, (1) A市とB市に行ったことのある人は何人か。 (2) A市だけに行ったことのある人は何人か。 指針 /p.333 基本事項 集合の問題 図をかく 集合が3つになるが, 2つの集合の場合と基本は同じ まず、解答の図のように、3つの集合の図をかき、わかっている人数を書き込む また、3つの集合の場合、 個数定理は次のようになる。 n(AUBUC)=n(A)+n(B)+n(C)-n(ANB)-n(BNC)-n(CNA)+n(ANBg 全体集合をひとすると n(U)=100 -U(100)- ANBOC (28) ANBNC 重要 分母を 1 810 , の個数 指針 A(50) 解答 また n(AUBUC) =n(U) -n (A∩BNC) =100-28=72 図から,ド・モルガンの 法則 B (13) C(30) (1) A市とB市に行ったことの ある人の集合は A∩Bである。 A∩BNC=AUBUC が成り立つことがわかる -n(BNC)-n(CNA)+n(ANBNC) 3つの集合の個数定理 (2) -U- n(AUBUC)=n(A)+n(B)+n(C) -n (A∩B) に代入すると 72=50+13+30-n (A∩B)-10-9 +3 したがって n(A∩B)=5 よって, A市とB市に行ったことのある人は 5人 (2)A 市だけに行ったことのある人の集合は ANBOC である。 ゆえに(A∩BNC) =n(AUBUC)-n(BUC) =(AUBUC)-{n(B)+n(C)-n(B∩C)} =72-(13+30-10)=39 よって, A市だけに行ったことのある人は 39 人 別解 (2) 求める人数は n(A)-n(ANB) -n(ANC) +n(A∩BNC) =50-5-9+3=39 よって 39 人 ある高校の生徒 140人を対象に、国語、数学、英語の3科目のそれぞれについ 4 得意か得意でないかを調査した 得意な 解答

解決済み 回答数: 1