学年

教科

質問の種類

数学 高校生

数Ⅰの二次関数の問題です。 x=-1,1で場合分けする理由を教えてください。 [2]に含めてもよいと考えてしまいました。 よろしくお願いします。

重要 例題 130 2次方程式の解と数の大小 (3) 000 方程式x+ (2-a)x+4-2a=0が1<x<1の範囲に少なくとも1つの をもつような定数αの値の範囲を求めよ。 基本 指針 条件が「-1<x<1の範囲に少なくとも1つの実数解をもつ」であることに 大きく分けて次のA, B の2つの場合がある。 A-1<x<1の範囲に, 2つの解をもつ (重解は2つと考える) ® -1 <x<1の範囲に, ただ1つの解をもつ A [1] 方程式の2つの解をα, B(α≦β) として, それぞれの場合につ + a いて条件を満たすグラフをかくと図のようになる。 ®は以下の4つの場合がありうるので注意する。 ® [2] ® [3] -1<x の範囲に B [4] a + B x は -1<x<1 の範囲に1つ、 <-1 または 1<x の範囲に1つ + x & x-x-2=0 (x-21 (x + 1) = 0 α=-1 A B= + -1 a -1 B1x x=-1と-1<x<1 の範囲に1つ f(x)=x2+(2-α)x+4-2aとし, 2次方程式f(x)=0の 解答 判別式をDとする y=f(x) のグラフは下に凸の放物線で,その軸は直線 a-2 x= である。 2 [1] 2つの解がともに-1<x<1の範囲にあるための条 件は, y=f(x) のグラフがx軸の-1<x<1の部分と異 なる2点で交わる, または接することである。 すなわち、次の (i)(iv) が同時に成り立つことである。 (1) D≥0 (Ⅱ) 軸が-1<x<1の範囲にある (iii) f(-1)>0 (iv) f(1)>0 (i) D-(2-a)2-4.1.(4-2a) =d+4a-12=(a+6)(a-2) D≧0から (a+6)(a-2)≥0 a≤-6, 2≤a ゆえに a-2 (ii) x= について 2 よって -2<a-2<2 ****** ① -1<a-2 <1 1 の範囲 2-a x=- 2-1 条件は 「少なくとも1 であるから, グラフがx軸 場合,すなわ この場合も含まれ [1] 軸 D=0 ゆえに 0<a<4 2 (i) f(-1)=-α+3であるから よって a<3 3. -a+3>0 +

未解決 回答数: 1
数学 高校生

(2)で「-1/√3<m<1/√3」からXの範囲を求めるとき、 解答のようにではなくて、三枚目のように考えてしまいました。 これでうまく求められないから、 解答のようにYの範囲を求めて図を描くことで、Xの範囲を求めよう! っていう思考回路ですか?

偶数の関係を使った ④よりm=1/2で⑤に代入しY=1/2x2-2x ③ ④ により,X < 0 または 8 < X 2 X,Yをx, y に書き換え, 求めるMの軌跡は よって, X=2m……… ④ であり,Mは①上にあるから,Y=mX-4m...⑤ X D=m²-4m>0 .. <0 または 4<m (3)P,Qの座標をα,βとし,M(X, Y) とおくと,x=α+B αβは②の2解であるから,解と係数の関係により,a+β=4m 2 ③ これから軌跡の限界が出てく P,Qの座標をm で表す必要 このようなときは具体 急がず、とりあえず文字でお ⑤ではなく. 34 y=14x²-2x Y= 16 y= x²-2x (x<08<x) であり,右図太線である (○を除く) 8 I 1-1/2 (+) (a+B)-2a8 8 =2m²-4m と ④ からYをXで表しても たことはないが(本間の場 ⑤ (直線上にあること)に着 るのがうまい。 補助に考える。 円が を通るときは別に調 く。 12 演習題 ( 解答は p.104) 円(x-2)2+y2=1と直線y=mzが異なる2点P, Qで交っているとき, (1)の値の範囲を求めよ. (2) 線分 PQ の中点Mが描く軌跡を求め, それを図示せよ (軌跡に端点がある場合は その座標を明示せよ). (群馬大理工,情/改題) Mが直線上にある をうまく使う、なお 形的に解くことも る.

回答募集中 回答数: 0
数学 高校生

(3)を解いてみました。私の解答でmの存在条件を考える時、 2m=Xと-8m=Y の両方の条件を使えばいいのか、 またはどちらかを使えばいいのか分かりませんでした。

ヨチェク ①8/130 to 212 12 軌跡 / パラメータを消去 座標平面上に直線1:y=mz-4mと放物線y=1がある.mは,IとCが異なる2点P, Qで交わるような値をとるとする.また, 線分 PQ の中点をMとする. (1) 1はmの値にかかわりなく、 ある定点を通る。 この点の座標を求めよ。 (2) m のとりうる値の範囲を求めよ. (3) Mの軌跡を求め, 座標平面上にそれを図示せよ。 (南山大 外国語, 法) 軌跡の素朴な求め方 動点の軌跡の素朴な求め方は,動点M(X, Y) を原動力 (本間ではm, 以下 パラメータと呼ぶ) で表して, それがどんな図形であるかをとらえる方法である。 直接読み取れること もあるが、一般的には,パラメータによらないXとYの関係式 (パラメータを消去した式) を作ること で、 軌跡の方程式を求めることになる。 なお、 実際にはXとYの関係式を作るとき、必ずしもX,Yを パラメータだけで表した式を用意する必要はない. 本間の場合 「Mが上」 に着目するのがうまい。 「軌跡」 と 「軌跡の方程式」 問題が「軌跡を求めよ」という要求なら, 軌跡の限界 (範囲: 不等式) を考慮しなければならないが,「軌跡の方程式を求めよ」 という要求ならば、その必要はなく、単に方程 式 (等式)を求めるだけでよい,というのが慣習である。 本間 (3) の場合 Mのx座標は,解と係数の関係を使う. y座標は1の式から (2) にも注意. 解答量 (1) 直線/は,y=mx-4m ①の右辺をmについて整理して,y=m(x-4) これは定点 (40) を通る. (2) y=1/2と①を連立して得られる方程式 ・① M C 1なければ主と 依存して パラメータでおし 1 r²-mx+4m=0· ・② 4 x 4 a XOB が異なる2つの実数解を持つ. 判別式をDとすると, D=m²-4m>0 m <0 または4<m (3) P,Qの座標をα βとし, M(X, Y) とおくと, X=- a+B 2) ・・・③ これから軌跡の限界が出てくる. PQの座標をm で表す必要はな い。 このようなときは具体化を 急がず、とりあえず文字でおく α, βは②の2解であるから,解と係数の関係により, a+β=4m よって、X=2m であり,Mは①上にあるから,Y=mX-4m⑤⑤ではなく、 =1/2で、⑤に代入しY=1/2x2-2x ④よりm= ③ ④ により,X < 0 または 8 < X X,Yをx, y に書き換え, 求める M の軌跡は 1 y= x²- ーー2x (x<0または8<x) であり, 右図太線である (○を除く)。 16 y=x²-2xy=- 04 8 x 1/2 B2 4 (a+8)2-2aß JA8 =2m²-4m と ④ から Y を X で表しても大し たことはないが (本間の場合), ⑤ (直線上にあること)に着目す るのがうまい人、 12 演習題(解答は p.104) 円 (x-2)2+y2=1と直線y=mz が異なる2点P Qで交っているとき, (1) m の値の範囲を求めよ. (2) 線分 PQ の中点Mが描く軌跡を求め, それを図示せよ (軌跡に端点がある場合は 今の座標を明示せよ ). (群馬大・理工, 情/改題) Mが直線上にあること をうまく使う なお、図 形的に解くこともでき る. 91

回答募集中 回答数: 0
数学 高校生

ィの解説の(iii)でなんで-の方も成り立つのですか?

163 直方体 右図のような直方体 OADB-CEFG において OA=a, OB=6,DC=c とおく. \G F P ||=1,|6|=2, ||=3 とし, 2点E, Gを通る C 直線を とする. E (1) OE, OG を で表せ (2)Pを1上の点とする. このとき, OPは実数 tを用いて, OP =OE+tEG と表せる。 (ア) OP⊥EGとなるtの値を求めよ. (イ)△OEP が二等辺三角形となるときの 値をすべて求めよ. 3 B O 2 b a 1 A AA D ()() (2) (ア) OP, EG (=OG-OE) を a, L, で表し,|a|=1,||=2, 精講 ||=3, a1=c=cd=0 を用いて計算すれば, tの方程式が でてきます. これを解けば答えはでてきます. (イ) 二等辺三角形という条件は要注意です. それはどの2辺が等しいかによっ て,3つの場合が考えられるからです。 注 →3つの場合でしらべる 三辺の距離を求める (イ)|OE|=12+32=10 |OP|=|(1-t)a+t+c (1) 画 =(1−t)|a²+b²+1c1² (a+b=b.c=c.a=0) J30=12-21+1+4t²+9=5t²-2t+10 |EP|=|tEG|2=5t2 ← (i) OE OP のとき, OEPOP より,エース 253 10=5t2-2t+10 t(5t-2)=0.. t = // (t=0は不適 (OPEP のとき,|OP|=|EP|より 5t2-2t+10=5t2 2t+10=0 :.t=5 POE のとき,|EP|=|OÉRより,平日 5t2=10 t2=2. t=±√2 (1)〜() より t=±√2, 5' (2) 直方体では, 座標も有効な手段です. すなわち, A (1, 0, 0), B(0, 2, 0), C(0, 0, 3) とおくと, EG=AB だから OP= (1,0,3)+t(-1,2,0)=(-t+1, 2t3) と表せ, P(-t+1, 2t, 3), E (1, 0, 3) と座標で表して, OP2, EP2, OE' を計 算します。 解答 (1) OE=OA+OC=d+c OG=OB+OC=6+ (2) (ア)OP=OE+tEGOE+(OG-OE) =a+c+t(-a) =(1−t)a+to+c OPEG = 0 だから {(1-t)a+to+c)(-a)=0 . (t−1)|at|62=0 ||=1,||=2より t-1+4t=0 5 ( à·b=b.c=c·à=0) ポイント単に「二等辺三角形」「直角三角形」 とあったら, 場合 が3種類あることに注意 演習問題 163 右図の直方体において, AG = (5, 5, -3), H G AC=(3,1,2), BH=(3,1,-7) が成りた っている. (1) AB, AD, AE を成分で表せ. (2)直線AH 上に, △ABP が二等辺三角形 A となるように点Pをとる. (ア) <BAH= を示せ. (イ) A=tA となる実数tの値を求めよ. Di F 第8章

未解決 回答数: 1