学年

教科

質問の種類

数学 高校生

線を引いたところの意図がよく理解できません。mのとこがわかってないのですがどういうことか教えていただきたいです🙇

[2]複素数1の12乗根を 20, Z1,Z2,…, z11 とし, Zo=1とする。 Zkk=0,1,2, ....... 11) の偏角を0とし, 0=0<<<<<2πとすると T 0₁ = = Ok オ H である。 オ の解答群 Z₁ = 1 2 Zk=cos 2KTL 12 2kT tisin k 12 π ① ん6 k π 4 k+1 12 k+1 π π 6 k+1 4 2k-1 2k-1 2k-1 π ⑥ 12 一π ⑦ π ⑧ TC 6 4 Zk"=Zzkとなる2以上で最小の自然数をMと表し, kの値によってMの値が どうなるか, 太郎さんと花子さんは考察している。 太郎:20,21,22, ......, Z11 を複素数平面上に図示するとどうなるかな。 花子: 20,21,22, ..., Z11 の絶対値はどれも1だから, 偏角について考える とよさそうだね。 太郎: 点 z12は点z2 と重なるね。 花子: 点 21, 214, ······についても同じように考えると, k=1のときのMの値 がわかるね。 k=1のときM=13であり, k=2のときM= である。 m Z₁ = Z₁ M M=3 となるようなんの値はん=キである。 Z2 =Zk 2x=1 複素数平面上の (M-1) 個の点 Zk, k, なんの値は ZkM M-1 が正方形の頂点となるよう m Z=Z k= ク ケ 3 =Z21d⑤ M-I Z=101 である。ただし、ケとする。 Z2:cosネルtigin/co1g fisin/cosotismQ T=0+2nπL k=6n 10.6 (第3回 25 ) M- (costism) M-I cosmos='ntisinnoyin=cosQ+ismo 1=7 min 共

回答募集中 回答数: 0
数学 高校生

このノートの(4)(ii)で、 xとyの最大公約数をgとすると、なぜ g=2^a×3^b×5^c×11^dになるんですか?

ET D Lake A P B BO [D 13 60 A A 15 C 8 B 接弦定理より∠ABD=∠ACBであり、 <Aは共通であるから、 の最大公約数をgとすると、 (i) x x Y or (i)よりa,b,c,dを Osas3, 08652.0 C≤2.0d₤17 満たす整数として d g=2x30x5x119と表せる。 acyの正の公約数の総和2604 よって、 △ABDCACBである。 AB:BD=AC:CB はgの正の公約数の総和に 楽しいので、 であるから、8:BD=15:13 15BD=104 2604=(1+2+…+2)(1+3+-+36) (I+ 5 +---+59) (I+ (1 +- +11) BD=104 である。Osa3.0/2.02. osd/1より、 (4)を正の整数とし、y=19800とする。 となの正の公約数の総和は 2604である。 (ⅰ) yを素因数分解 2119800 2 19900 214950 312475 31 15 +13 X12 45 15 62 31 31825 51275 5155 ( y=28.38.5:1 (ii)xとyの最大公約数 195372 yの公約数の総和 (2+2+2+2))(3+3+3)(5°+5+5) × (11°+11) 372 =(1+2+4+8)(1+3+9)(1+5+25)(1+) '9'0 13651=15×13×31×12 585 72'5'40 212604 211302 31651 71217 31 (+2+…+2=1.1+2,1+2+2+1+2+2+2 =1.3.7.15 (+3+430=1.13.1+3+3=1.4.13 1+5+…+5=1.1+5,1+5+5=1.6.31 1+1+パントけ11=1.12であり 2604=223.7.31 であるから、 ②の右が7の倍数であるにはa=2が 必要で、③のなが3の倍数であるにはC=2 が必要である。このとき③は 22×3×7×37×(1+3+39)x3x(HH-11 すなわち12=(1+3+…+3%)(1+11+..+ となる。「ほたは4または13」と「ほまたは12」の積 が12となるのは1×12のときのみなので、 b=0,d=1である。以上より、 g=23×3×5×11=1100

回答募集中 回答数: 0
数学 高校生

赤丸で印をつけた(3)について… 微分したこたえを4でくくっても○ですか⁇

320 基本 例題 199 導関数の計算 (2) 展開してから微分 次の関数を微分せよ。 宅公 (2)y=(2x+1)3 (1) y=(x+1)(x-3) (3) y=(x²-2x+3) 2 (4)y=(4x-3)^(2x+3) 指針 や累乗の形のものは、 展開してから、 公式を使って微分すればよい。 (x)=xnは正の整数), {kf(x)+1g(x)}'=kf'(x)+1g'(x) (k, 別解のように, 次ページで紹介する, 次の公式①、②を利用してもよい。 ① {f(x)g(x)}'=f'(x)g(x)+f(x)g'(x) (積の導関数の公式) ② {(ax+b)"}'=n(ax+b)"' (ax+b)' 一般に ({f(x)}")'{f(x)}"'f(x) (1) y=x²+x-3x-3 (nは自然数 は定義 解答 よって y'=3x2+2x-3・1=3x+2x-3 (2) y=(2x)+3(2x)・1+3・2x・12+1=8x3+12x2+6x+1 よって y'=8・3x2+12・2x+6・1=24x2+24x+6 (+) (3) y=(x2)2+(-2x)+32+2・x2・(-2x)+2・(-2x)・3+2・3・x2m =x4-4x3+10x²-12x+9 よって y''=4x3-4・3x2+10・2x-12・1=4x-12x2+20x-12 (4) y=(16x²-24x+9)(2x+3)=32x³-54x+27-4x-377-5x-3) よって い y'=32・3x2-54・1=96x2-54 別解 (1) y=(x+1)(x-3)+(x+1)(x-3)=1(x2-3)+(x+1) ・2x 3x2+2x-3 (2) y''=3(2x+1)3-1 (2x+1)=3(2x+1)^2=6(2x+1)^ (3)y'=2(x²-2x+3)2-1(x2-2x+3)、=2(x²-2x+3)・(2x-2) =4(x-1)(x²-2x+3) (4) y'={(4x-3)2}^(2x+3)+(4x-3)^(2x+3)、 ={2(4x-3)2-1(4x-3)^}(2x+3)+(4x-3)^ ・2 まず、積の導関数。 ={2(4x-3)・4}(2x+3)+2(4x-3)²=2(4x-3){4(2x+3)+(4x-3)} =2(4x-3)(12x+9)=6(4x-3)(4x+3) 参考 別解の(2)~(4)の結果は、展開すると上の解答と同じになる。 ■ 公式 ① {f(x)g(x)}=f'(x)g(x)+f(x)g'(x), ② {(ax+b)"}'=n(ax+b)"-1 (ax + 式を展開せずに計算できる

未解決 回答数: 1