学年

教科

質問の種類

数学 高校生

126.1 解説の3行目以降の()は何をしているのですか?

504 00000 基本例題126 互除法の応用問題 (1) 2つの整数m,nの最大公約数と3m+4n, 2m+3n の最大公約数は一致す ることを示せ。 (2) 7 +48 +5 が互いに素になるような 100 以下の自然数n つあるか。 指針 最大公約数が関係した問題では, p.501 基本事項 ① (*)で示した, 右の定理を利用して,数を小さくし ていくと考えやすい。 本問のように,整式が出てくるときは,まず, 2つの 式の関係をa=bg+r の形に表す。 次に, 式の係数や次数を下げる要領で変形していくとよい。 解答 2 数A, B の最大公約数を (A,B) で表す。 口 (1) 3m+4n=(2m+3m) ・1+m+n, 2m+3n=(m+n) ・2+n, m+n=n·1+m よって (3m+4n, 2m+3n)=(2m+3n, m+n) =(m+n, n)=(n, m) したがって,m,nの最大公約数と3m+4n,2m+3nの最 大公約数は一致する。 221 DE 01 ① とおくと 2 は全部でいく p.501 基本事項 ① aとbの最大公約数 a=batr 等しい 3m+4n=a m=3a-4b [別解 2m+3n=b n=36-2a mとnの最大公約数をd, aとbの最大公約数をeとする。 ① より αと6はdで割り切れるから, dはaとbの公約数 である。 ゆえに d≤e ...... e≦d 同様に,②よりはとnの公約数で ③ ④ から d=e よって, 最大公約数は一致する。 (2) 8n+5=(7n+4)·1+n+1, 7n+4=(n+1).7-3 ゆえに (8n+5, 7n+4)=(7n+4, n+1)=(n+1, 3) 7 +4と8+5は互いに素であるとき, n+1と3も互いに 素であるから, n +1と3が互いに素であるようなnの個数 を求めればよい。 R-X10 2≦n+1≦101 の範囲に,3の倍数は33個あるから 求める 自然数は 100-3367 (個) 練習 ③ 126 (1)a,bが互いに素な自然数のとき, 3a+7b 2a+5b とrの最大公約数 差をとって考えてもよい。 3m+4n-(2m+3n) = m+n 2m+3n-(m+n)=m+2n m+2n-(m+n)=n m+n-n=m <m=dm',n=dn', a=ed', b=eb' とする ① は 'd(3m'+4n')=a d(2m'+3n')=b re(3a'-4b')=m e(36'-2a')=n ②は a=bg-r のときも (a, b)=(b, r) が成り立つ。 .501の解説 と同じ要領で証明できる。 は既約分数であることを示せ。 (2) 3n+1と4n+3の最大公約数が5になるような50以下の自然数nは全部で いくつあるか。 Op.514 EX87.88 以下 1 フ r 角 例1 た た x 例2 方 a VE x ア G C Q Ve 3

回答募集中 回答数: 0
数学 高校生

なぜS1とS2で分けるのですか?

60 第8章 数列 [Check] 例題 257 既約分数の和 考え方 pは素数,m,n は正の整数でm<nとする.m を分母とする既約分数の総和を求めよ. 具体的な数で考えてみる.たとえば,2と4の間 (2以上4以下)にあって,5を分 母とする数は, Flocus 10 (-2), 11, 12, 13, 14, 15 (-3), 16, 17, 1 5 5 5 つまり, 2, 2+1/13, 2+1/23 2+10 となり,初項2 公差 1/3の等差数列にな m以上n以下で』を分母とする数は、考え方を見る。 mp (=m), mp+1_mp+2 p か Þ' つまり,初項m, 公差 1/3の等差数列となる。 項数np-mp +1, 末項nであるから, その和 S は, +02= っている. 項数は分子に着目して 11 (=20-10+1) 個である. これらの和を求めて、そのうち既約分数にならないもの(整数) を引くとよい。 ...... 整数の また、このうち, 既約分数でない数は, m,m+1,m+2, n-1, n *** mとnの間にあって、 (同志社大) S=1/12 (np-mp+1)(m+n) ……① S₁2 S2=1/12 (n-m+1)(m+n).....② == =- 1 公差の等差数列 か 項数をkとすると n=m+(k-1)} *), k= (n-m)p+1 だから, S₁={(n-m)p+1} つまり,初項m, 公差1の等差数列であり、 Sx(m+n) 項数n-m+1,末項nであるから, その2は,としてもよい . 分母が素数であるから, np-1 np ²(=n) p' p =1/12 (m+n)(n-m)(p-1) 5' 5' 5'5'5 よって 求める和Sは, ①, ② より CRE 201 S=1/12 (np-mp+1)(m+n)-1/12(n-m+1)(m+n) (m+n)(np-mp+1-n+m-1) 18 19 20 (4) 具体的な数で調べて規則性をみつける 注素数を分母とする真分数の和は 0>80+n8 (1-x)+08-SIA- まずはすべての分数の 和を求める. S=1/(数) x (初項+末項) 既約分数でないものは からnまでの整数に なる. 項数n-(m-1) S1 から S2 を引けば, 既約分数のみの和とな る. S=S-S2

回答募集中 回答数: 0
数学 高校生

急ぎです。数学I、Aの範囲です 模範解答がないので作って欲しいです

1 次の1~5の□に当てはまる数字を答えなさい。 ただし、分数は既約分数で答えな さい。 問1 実数に関する2つの条件 A: x-ax+6b=0(a,b は実数の定数) B : x = 2 がある。 AがBであるための必要条件であるとき, α= b+ 2 である。 また,a=b+ 226=4のとき、命題「A⇒B」 の反例は,x= 34 である。 問2 a,b,c は定数とする。 関数f(x)=a(x-b)(x-c) がある。 放物線y=f(x)の頂点は (5,2),放物線y=f(x)がx軸から切りとる線分の長さは4である。 ただし, c>とする。 このとき, α= 5 6 b=17 > c=8である。 問3aは定数とする。 大きさ8のデータ 21,32,8,24,12,38, 35, αがある。 このデータ の中央値が25.5であるとき, α9 10 である。 また,このとき,このデータの四分位範囲は1112 である。 いた条件付き確率は 問4 当たりくじを3本だけ含む 10本のくじがある。 このくじをA,Bの2人がこの順に1本 ずつ引く。 ただし,一度引いたくじは元に戻さない。 A,Bのうち, 少なくとも1人が当たりくじを引く確率は また,A,B のうち少なくとも1人が当たりくじを引いたとき, Bが当たりくじを引いて [16] 17 18 である。 問5 △ABCの辺AC上に点D, 辺AB上に点Eが あり, AD: DC=5:6, ACE: △ABC=4:7 である。 また,線分 BD と CE の交点をPとし, 直線AP と辺BCの交点をFとする。 このとき,線分の長さおよび三角形の面積の 比を最も簡単な整数の比で表すと BF:FC=19:20 △PCA: △ABC=21:22 23 である。 13 14 15 B である。 E F

回答募集中 回答数: 0
数学 高校生

【3】アだけ自力で出来ました。ほかは全部分からないので、1箇所だけでもいいので解説お願いします。

2021 推薦 〔1〕次の # にあてはまる数を求め、 解答のみを解答欄に記入しなさい。 (1) 1+√3のとき、a-2a-2の値は ア @totata'+α の値は イ + ウ であり。 √3である。 (2)+1,定数aが Ises1のとき.√x+2a+√x-2a= る。 (3)を整数と整数部分が5であるとき,の値は | オ (1) α, bを定数とする。 関数y=ax-4ax+b(-1≦x≦3)は 最大値が7. 最小値が−2である。 a>0のとき,a= ア あり.a<0のとき、b= ウ である。 であ 〔2〕次の にあてはまる数を求め、 解答のみを解答欄に記入しなさい。 ただし、 解答が分数となる場合は既約分数で答えること。 b= である。 で (2) a, kを定数とする。 2次関数y=2x²-4x+8のグラフをx軸方向に2,y 軸方 向にだけ平行移動すると、 2次関数y=2x²-12ax+6a+6のグラフに重なると k= オ である。 I 〔3〕を定数とする2次方程式x-2ax+a+2=0が異なる2つの実数解をもつとき、次 にあてはまる数を求め、 解答のみを解答欄に記入しなさい。 ただし、 解答 が分数となる場合は既約分数で答えること。 の (1) この2次方程式の2つの実数解がともに-1<x<3の範囲にあるときのとり 得る値の範囲は 7 <a<- <号である。 (2) この2次方程式の2つの実数解のうち、一方のみが-1<x<3にあるとき,の とり得る値の範囲はa < ウ Saである。 (3) この2次方程式の2つの実数解のうち、少なくとも1つが-1<x<3の範囲にあ るとき、aのとり得る値の範囲はa< <a である。 〔4〕 AB=3,AC=2BCである△ABCにおいて, 辺AB上にAD: BD=2:1になる ような点Dをとる。 ∠ADC=135°であるとき, 次の にあてはまる数を求 め、解答のみを解答欄に記入しなさい。 ただし、 解答が分数となる場合は既約分数で答 えること (1) BC=√ ア (2) sin∠BAC= 1 (3) sin∠ABC= ウ である。 √5 である。 √5 である。 (4) △ABCの外接円の半径は (5) ABCの面積は オ である。 である。 医療技術・福岡医療技術学部

回答募集中 回答数: 0