学年

教科

質問の種類

数学 高校生

高次方程式についての質問です。青のマーカーを引いたところと、紫のアンダーラインをつけたところが何を言ってるのかさっぱりわかりません。紫のところは何故そうなるのか分からず、青のマーカーはこの文で何を伝えたいのか、文章の意味すらよくわかりません。どちらか片方だけとかでもいいので... 続きを読む

* り 改) 余り x) を とき Think 例題 53 割られる式の決定 3 高次方程式 115 **** x'+2x+3で割ると x+4余り, x2+2で割ると1余るような多項式 P(x) で,次数が最小のものを求めよ. 考え方 P(x) を4次式 (x+2x+3)(x+2) で割った余り R(x)は3次以下の式である. 解答 P(x) = (x2+2x+3)(x+2) (商)+R(x) m +2x+3で割るとx+2x+3で割ると、余りは、 割り切れる. 1次以下の多項式 P(x) をx+2x+3で割った余りと一致する. P(x) を4次式(x2+2x+3)(x+2)で割ったときの商を Q(x)余りをR(x) とすると (x)=(x+2x+3)(x2+2)Q(x)+R(x) ・・・・・・ ① と表せ,R(x)は3次以下の式である。 また、①において,P(x) をx+2x+3で割ると, (x+2x+3)(x+2)Q(x)はx+2x+3で割り切れるから, P(x)をx'+2x+3で割った余りx+4は, R(x) をx'+2x+3で割った余りと一致する。 つまり、R(x)=(x+2x+3)(ax + b) + x +4 ...... ② とおける. 同様に,P(x) を x+2で割った余りが-1であるから, R(x)=(x+2)(cx+d-1 ...... ③とおける. ②③より, (x2+2x+3)(ax+b)+x+4=(x+2)(cx+d)-1 が成立し, 左辺と右辺をxの降べきの順に整理すると ax+(2a+b)x2 + (3a +26+1)x +36 +4 =cx'+dx2+2cx+2d-1 これはxの恒等式であるから, n a=c, 2a+b= d, 3a+26+1=2c, 36+4=2d-1 これらを a b について解くと, a=1, b=-1 よって,②より R(x)=(x2+2x+3)(x-1)+x+ 4 = x + x+2x + 1 ①より P(x)=(x2+2x+3)(x+2)Q(x)+x+x+2x + 1 そして,P(x)の次数が最小になるのは Q(x) =0 のとき である. Focus 練習 53 **** よって、 求める多項式は, P(x)=x+x'+2x+1 割る式が4次式なの で、余りは3次以下 R(x) は3次以下の 式だから 2次式で 割ったときの商は1 次以下の多項式と なる. c, dを消去すると、 a +26=-1 4a-b=5 Q(x) =0 のとき, P(x) は4次以上の 式となる。 多項式 P(x)=A(x)・B(x)+R(x) のとき,P(x) をA(x)で割っ た余りと,R(x) を A (x)で割った余りは等しい費用 (x-1)2で割ると x +3余り(x+2)2で割ると-8x+12余るような多項式 P(x) で、次数が最小のものを求めよ. コン 2 うまくり

回答募集中 回答数: 0
数学 高校生

高一数学です。 こちらの文章問題の不等式を作る中で(x-1)となる理由がわかりません…教えてください🙇‍♀️

71 基本 例題 39 1次不等式と文章題 00000 何人かの子ども達にリンゴを配る。1人4個ずつにすると19個余るが, 1人7 個ずつにすると,最後の子どもは4個より少なくなる。このときの子どもの人 数とリンゴの総数を求めよ。 指針 不等式の文章題は、次の手順で解くのが基本である。 [類 共立女子大 ] 基本34 この値を求め ことに注意 とは考えな に分けて 条件。 はダメ 1 41次不等式 章 ① 求めるものをxとおく。 ここでは,子どもの人数をx人とする。 ② 数量関係を不等式で表す。 リンゴの総数は 4x+19 (個) 「1人7個ずつ配ると, 最後の子どもは4個より少なくなる」 という条件を不等式で表す。 3 不等式を解く。 4 解を検討する。 注意 不等式を作るときは, 不等号に ② で表した不等式を解く。 xは人数であるから, xは自然数。 を含めるか含めないかに要注意。 a <b... b は a より 大きい, αは6より小さい, a は 6 未満 a≦b....... ・6は α 以上, αは以下 CHART 不等式の文章題 大小関係を見つけて不等号で結ぶ の形に -1(> の向き 求めるものをと ない 。 子どもの人数をx人とする。 不等 解答 1人4個ずつ配ると19個余るから,リンゴの総数は 4x+19 (個) する。 - る。 これを不等式で表すと 式は 整理して 0≦4x+19-7(x-1)<4 0≦-3x+26<4 各辺から26 を引いて 26≦x<-22 22 各辺を-3で割って 26 <xs 3 1人7個ずつ配ると、最後の子どもは4個より少なくなる から,(x-1) 人には7個ずつ配ることができ,残ったリンとく ゴが最後の子どもの分となって, これが4個より少なくな 12 不等式で表す。 は、(総数){(x-1) 人に配ったリンゴの数} ③ 不等式を解く。 ④解の検討。 23 22 =7.3.... 26 3 ・=8.6... xは子どもの人数で, 自然数であるから したがって 求める人数は 8人 また,リンゴの総数は 4・8+19=51(個) 4x+19

未解決 回答数: 1