学年

教科

質問の種類

数学 高校生

赤丸のところで100Xになるのは分かるのですが下の10Xはなぜxではなく10xになるのか教えてほしいです🙏🏻

(1) 次の循環小数を分数で表せ。 基本 例題 20 循環小数の分数表示など (ア) 2.42 (イ) 0.342 (ウ) 3.26 p.41 基本事項 1章 3 9 37 (2) を小数で表したとき, 小数第50位の数字を求めよ。 CHART & SOLUTION 循環小数の分数表示 = (循環小数) とおき, 循環部分を消す (1)例えば,循環小数x = 0.1 は, 小数部分が1桁ずつ繰り返して いるから, 10x と xの差を考えて、 右のように計算すると 9x=1 よってx=1/23 これと同様に考える。 10x=1.11" - x=0.11. 9x=1 (ウ)x=3.26 とおいて10x=32.6 から 10x-x を計算してもよいが, 分子に小数が出て きてしまう。 100x-10x を計算する方がスムーズ。 (2) 循環小数に表し、 何個の数字が繰り返し現れるかを調べる。 k個の数が繰り返し現れる なら, 50をんで割った余りに注目。 4440 実数 (1) (ア) x=2.42 とおくと, 100x=242.4242・・・・・ 右の計算から x= 240 80 99 33 (イ) x=0.342 とおくと, 右の計算から - x= 2.4242・・・・・ 99x=240 -) 342 38 x=- ←循環部分が2桁→ 両辺を100(102) 倍。 1000x=342.342342・・・・・・ 0.342342・・・・・・ x= 999x=342 100x=326.66•••••• ◆辺々を引くと, 循環部分 が消える。 ←循環部分が3桁→ 両辺を1000 (10) 倍。 + 999 111 (ウ) x=3.26 とおくと,右の 294_49 - 10x= 32.66・・・・・・ 計算から x= 15 90 90x=294 10x-xを計算すると, 9x = 29.4 から x=- 29.4_294 49 9 90 15 9 (2) =0.243243=0.243 37 よって, 小数点以下で243の3個の数字が循環する。 50=3・16+2 243を□とすると .....0 |24 16個 2個 であるから, 小数第50位は243の2番目の数字で4である。 PRACTICE 20 2 (1) 次の循環小数を分数で表せ。 (ア) 0.7 (イ) 3.72 (ウ) 1.216 10 (2) を小数で表したとき,小数第 100 位の数字を求めよ。 7

解決済み 回答数: 1
数学 高校生

(2)の問題がわかりません。 散布図は、1に近いので正の相関は、わかりますが、図の書き方がわかりません。なので➃か⑥で迷いました。 あと、ケの範囲はどう求めますでしょうか? 教えていただきたいです。🙇‍♀️

9 8/6/ Ex 14 データの相関関係 男女5人ずつが, 国語と数学のテ 制限時間 15分 男子 女子 ストを受けた。 国語 45 37 39 31 23 33 35 46 41 29 (1) 男子の国語の点数の平均値は 35点 分散は56 であり, 男子 の数学の点数の平均値は アイ点,分散はウエである。 また, 男子の国語と数学の 点数の相関係数は オカキである。 ただし, 小数第3位を四捨五入して小数第2位 まで答えよ。 数学 34 32 31 30 23 25 32 38 40 25 (2)男女10人の国語の点数をx, 数学の点数をyとし,x,yの相関係数をrとする。 x, yの散布図として正しいものは ク |,rの範囲として正しいものは ケ である。 ク ケ には,当てはまるものを,下の①~⑥のうちから1つずつ選べ。 -0.9 <r <-0.7 ① -0.5 <r <-0.3 ② 0.3 <r<0.5 0.7 <r < 0.9 ④ 45 ⑤ 45 ⑥ 45 40 35 40 40 8.0 35 0 35 y 30 25 + • 20 y 30 30 25 25 • 20 20 20 25 30 35 40 45 50 x 20 25 30 35 40 45 50 x 20 25 30 35 40 45 50 x 解答 (1) 数学の点数の平均点は (34+32 +31 +30 +23) アイ [30] 基本 14-1 5 よって、 数学の点数の分散は -{(34-30)'+(32-30)'+(31-30)'+(30-30)+(23-30)^} 5 1 70 ウエ (16+4+1+0+49)= = 5 5 国語と数学の点数の共分散は 1/ -{(45-35)(34-30)+(37-35)(32-30)+(39-35)(31-30) +(31-35)(30-30)+(23-35)(23-30)} 132 = ~ ( 40+4+4+0+84) = -=26.4 1に近い 5 5 26.4 26.4 オカキ ゆえに、相関係数は =0.942≒ +0.94 ○ 基本 14-2 √56×√14 28 (2)正しい散布図は’④ 更に、この散布図から, xとyの間には強い正の相関があること が読みとれる。 したがって, rの範囲として正しいものは ○基本 14-3 解法の思考回路 数学の点数の平均値,分 散を求める。 相関係数を求めるために, 国語と数学の点数の共分 散を求める。 散布図の特徴から, 相関 係数の値の範囲を絞りこ む。 データの分析

解決済み 回答数: 1