学年

教科

質問の種類

数学 高校生

赤で囲った0って何処の0ですか? 途中式があるなら途中式含めて教えてください。

基本 例題5/ 高次式の値 x=1+√2のとき,次の式の値を求めよ。 P(x)=x^-4x3+2x2+6x-7 93 い 基本8 [① 根号と虚数単位iをなくす ] 指針x=1+√2iをそのまま代入すると,計算が大変である。このようなタイプの問題では,計 算が複雑になる要因を解消する手段 (次の手順①,②) を考える。 x=1+√2iから x-1=√2i この両辺を2乗すると (x-1)=-2 ← -根号とが消える [ ② 求める式の次数を下げる] (x-1)²=-2を整理すると x²-2x+3=0 A24 P(x) すなわち x-4x3+2x2+6x-7をx²-2x+3で割ったときの商 Q(x), 余り R(x) を求めると,次の等式 (恒等式) が導かれる。 P(x)=(x²-2x+3)Q(x)+R(x) Lx=1+√2iのとき,= 0 ! 1次以下 x=1+√2i を代入すると,右辺は 0Q(1+√2i)+R(1+√2i) となり, 1次式の値を求めることになる。 2章 TE 10 次数を下げ る 剰余の定理と因数定理 CHART 高次式の値 次数を下げるあるからQZ 解答 x=1+√2iから x-1=2i 両辺を2乗して (x-1)2-2 整理すると x2-2x+30 ① < x=1+√2iは①の解。 P(x) を x2-2x+3で割ると, 右のようになり 商x²-2x-5 余り 2x+8 1 -2 -5 -231-4 1 -2 である。 よって P(x)=(2-2x+3)(2x-5) x=1+2iのとき、①から P(1+√2i)=0+2(1+√2i) +8=10+2√2 i <検討参照。 別解 ①まで同じ。 ①から x2=2x-3 よって x3=x2.x=(2x-3)x=2x2-3x=2(2x-3)-3x=x-6 x=x3.x=(x-6)x=x2-6x=(2x-3)-6x=-4x-3 ゆえに P(x)=(-4x-3)-4(x-6)+2(2x-3)+6x-7=2x+8 よって P(1+√2i) = 2(1+√2i) +8=10+2√2 i 検討 恒等式は複素数でも成り立つ -2 -1 -2 -5 12 -5 -6 6 5231455 -7 -6 -7 10-15 28

解決済み 回答数: 1