学年

教科

質問の種類

数学 高校生

【微分方程式】質問は,画像の大問2に関してです. (1)この証明が正しいか教えてください.(自信あり!) (2)と(3) 私の考えついたやり方では,yが残ります.  解法を教えてください. (4) 自信があります.正しいか確認してください.  誤答の場合,正しい答え... 続きを読む

問題用紙 (数学・応用数学) 1 01 問題1 A= 030 とおくとき、 下の問いに答えなさい。 101 (1) A の固有多項式 [tE-A を求めなさい。 ただし, Eを3次単位行列とする。 (2) Aの固有値と固有ベクトルを求めなさい。 問題2の関数y=g(x) に関する微分方程式 (*)g" + y = sinz を考える。 u= u(x)=-ycost+y sinz, v=v(x)=ysinz+y cos とおくとき, 下の問いに答えなさい。 (1) ucos+using=y が成り立つことを示しなさい。 (2) , vxの関数として表しなさい。 (3) , をxの関数として表しなさい。 (4) 微分方程式 (*)の一般解を求めなさい。 問題3 zy 平面において, 領域 S, T を S : 2² + y² ≤1 T: 1≤² + y² ≤ 4,0 ≤ y ≤ x と定義する。 下の問いに答えなさい。 (1) 重積分 † (2² + y²) dzdy &***ěv¹. (2) 重積分 SS₁² tan-1dxdy を求めなさい。 問題4nを自然数とする。 箱Aには赤玉1個と白玉2個が入っている。 箱Bには赤玉2個 と白玉1個が入っている。 まず箱Aと箱Bをでたらめに選ぶ。 次に、選んだ箱から 復元抽出で回繰り返し玉を取り出す。 下の問いに答えなさい。 (1) n=1のとき, 赤玉が取り出される確率を求めなさい。 (2) n回全てで赤玉が取り出される確率 pm を求めなさい。 (3) 回全てで赤玉が取り出される条件の下でn+1回目も赤玉が取り出される条 件付き確率を求めなさい。 問1 枚中の1枚目一 長岡技術科学大学

未解決 回答数: 0
数学 高校生

(3)の丸したところが分かりません!なぜ1/2にするのですか?解説お願いします🙇🏻‍♀️

第4問 (選択問題) (配点20) 太郎さんのクラスと花子さんのクラスでは、修学旅行で新幹線を利用すること になった。二つのクラスの人数は合わせて80人である。 また,新幹線の座席は, 2列シートまたは3列シートになっている 使用するシートの中に空席ができないように座席の割り振りを考えよう。 (1) 2列シートをxシートだけ使い, 3列シートをシートだけ使うとする。 このとき、x,yは方程式 2x+3y=80 を満たす。 ① において, x=1 とすると, y = アイであり 2・1+3・ アイ=80 が成り立つ。 ①,②から, 方程式 ① の整数解を求めると, kを整数として ウk+1,y= エオ+ カキ と表される。 方程式 ① を満たす0以上の整数x,yの組は全部でクケ組ある。 座席を割り振るとき, できるだけ2列シートだけや3列シートだけに偏るこ とがないようにしたい。 すなわち, |x-yl が最小になるようにするとき 2列シートをコサ シート, 3列シートをシスシート 使用すればよい。 .2 (第7回 19 ) (数学Ⅰ・数学A 第4問は次ページに続く。) (2) (1)より、二つのクラスの80人の座席を使用するシートの中に空席ができ ないように割り振ることができた。 次に、人数Nが2以上の場合、どんな人数であっても、使用するシートの 中に空席ができないように座席を割り振ることができることを確かめよう。 例えば, N = 2,3,4,5について などと表すことができる。 一般に, 2以上のある自然数Aについて, 0 以上の整数x,yを用いて 2x+3y= A と表されたとする。 このとき, x,yのうち少なくとも一つは正の数であり, y≧1のとき 20 セ +3( x≧1のとき 2 =2のときは, x=1, y=0 として N = 2.1+3.0 N=3のときは, x=0, y=1として N=2.0+3・1 N=4のときは, x=2, y=0 として N=2・2+3.0 人間 N=5のときは, x=1, y=1として N=2・1+3・1 t (0) ソ x-2 y-2 タ チ +3 チ (1) x-1 =A+1 と, A +1 を表すことができる。 これを繰り返せば、2以上のどのような自然数も2x+3y (x,yは0以上の 整数) の式で表すことができる。 y-1 =A+1 セ の解答群 (同じものを繰り返し選んでもよい。 ) (2) y タ ≧0, ≧0, (第7回20) x+1 の解答群 (同じものを繰り返し選んでもよい。) ③ y+1 チ N N (4) x+2 y+2 (数学Ⅰ・数学A 第4問は次ページに続く。)

回答募集中 回答数: 0
数学 高校生

(3)の丸したところが分かりません!なぜ半分にするのですか?解説お願いします🙇🏻‍♀️

第4問 (選択問題) (配点20) 太郎さんのクラスと花子さんのクラスでは、修学旅行で新幹線を利用すること になった。二つのクラスの人数は合わせて80人である。 また,新幹線の座席は, 2列シートまたは3列シートになっている 使用するシートの中に空席ができないように座席の割り振りを考えよう。 (1) 2列シートをxシートだけ使い, 3列シートをシートだけ使うとする。 このとき,x,yは方程式 2x+3y=80 を満たす。 ①において, x=1 とすると, y = アイであり 2・1+3・ アイ=80 が成り立つ。 ①,②から, 方程式 ① の整数解を求めると, kを整数として x= ウk+1, y = エオ+ カキ と表される。 方程式 ① を満たす0以上の整数x,yの組は全部でクケ組ある。 座席を割り振るとき,できるだけ2列シートだけや3列シートだけに偏るこ とがないようにしたい。 すなわち, |x-yl が最小になるようにするとき 2列シートをコサ シート, 3列シートをシスシート 使用すればよい。 ..② ( 第7回 19 ) (数学Ⅰ・数学A 第4問は次ページに続く。) (2) (1)より、二つのクラスの80人の座席を使用するシートの中に空席ができ ないように割り振ることができた。 次に,人数Nが2以上の場合、 どんな人数であっても、 使用するシートの 中に空席ができないように座席を割り振ることができることを確かめよう。 例えば, N = 2,3,4,5について などと表すことができる。 =2のときは, x=1, y=0 として N = 2.1+3.0 N=3のときは, x=0, y=1として N = 2.0+3・1 N=4のときは, x=2, y=0として N=2・2+3.0 人 N=5のときは, x=1, y=1として N=2・1+3・1 一般に, 2以上のある自然数Aについて 0 以上の整数x,yを用いて 2x+3y=A と表されたとする。 このとき, x,yのうち少なくとも一つは正の数であり, y≧1のとき 20 セ +3( + ≧0, t (0) x-2 ソ チ x≧1のとき 20 と, A +1 を表すことができる。 これを繰り返せば, 2以上のどのような自然数も2x+3y (x,yは0以上の 整数)の式で表すことができる。 タ y-2 (1) x-1 +3 チ タ の解答群 (同じものを繰り返し選んでもよい。 ) =A+1 y-1 =A+1 (2) x タ ≧0, x+1 の解答群(同じものを繰り返し選んでもよい。) (2) y (3) y+1 (第7回20) チ 2 2 (4) x+2 y+2 (数学Ⅰ・数学A 第4問は次ページに続く。)

回答募集中 回答数: 0