学年

教科

質問の種類

数学 高校生

1枚目の11番のところのtheyと21番のthisはそれぞれ何を示しているのか教えてください。 2枚目の17番のweを示しているのは誰ですか。 3枚目の6番のsheはだれを示しているのか。 至急お願いします

Date 1. English as a ( 19 2 ) to one ( English )( 3 native English speakers ( 4 only a ( 5 English is now used more often/ 6 between ( )-(. most native speakers /tadé// )( .)/ ) of the world's English speakers. // ) speakers / 11 they 12 The English( 13 is called English as a lingua franca / 14 or ELF.// LESSON 4 than between ( 8 For example,/ 9 when business people from Japan, China, and Korea / 10 have a meeting,/ ) speakers. // 15 In using ELF,/ 16 you should speak clearly and simply.// 17 You should also ( ) on ( 18 For example, / ), / ) their business in English. // Xin this ( 20|( 21 This is not a problem/ 22 because we can understand both.// )(ELF) 23 However, / 24 if you say /dadér/ or /tatér/, / 25 no one will understand what you say.// 26 This example shows us/ ) some usually say /tadáw/// →このような例とは? 27 that consonants are more important than ( today as DL Part 3 どのような状況? ). // ) 11 ネ法 Japanese 国際共通語としての英語(ELF) ある概算によると 英語母語話者[ネイティブスピーカー] は 占めるにすぎません 世界の英語話者のたった4分の1を 今では、よく英語が使われています 非母語話者[非ネイティブスピーカー] 間 のほうが 母語話者 [ネイティブスピーカー] 間よりも たとえば 日本,中国, 韓国の実業家が 会議をするとき 彼らは英語で彼らのビジネスについて話 し合います このような状況で話される英語は 国際共通語としての英語と呼ばれます またはELFと ELFを使うときは はっきりと, 簡潔に話すべきです また、子音にも注意を集中させるべきで す たとえば たいていの母語話者[ネイティブスピーカー] は todayを/tadér/ と発音します 一方で、 普段は/tadá / と言う人もいま す これは問題ではありません 私たちは両方とも理解できるので しかしながら もし/dadér/か/tatér/ と言えば あなたの言うことはだれもわからないで しょう この例は、私たちに示しています 重要であることを

未解決 回答数: 1
数学 高校生

training 82の(2) xの変域が1からaまでなのがなぜかわかりません。 3≦a<5だからx=aで最小値を取り、x=3で最大値を取るのではないですか?

市の1辺をxとする。 号がついた形で最小 用する。 辺の長さ 辺の長さは正の数。 X 34 (0<x<10) 断り書きが重要! 10-1 y=x21 √a √b 最大 x=0 次関数の最大値・最小値(3) 82 定義域の一端が動く ①①①] がxsa である関数f(x)=(x-2)の最大値および最小値を、次の 場合について求めよ。 ただし は正の定数とする。 (2) 2=a<4 (3) a-4 (1) 0<a<2 CHART ● GUIDE Oxα は,αの値によって変わってく ・最大値・最小値が変わる。 関数 y=f(x)のグラフをかく。 簡単な図でよい。 グラフの軸や頂点と定義域の位置関係に注目 における最大値・最小値をグラフから読みとる。 しながら, それぞれのαの範囲に応じた定義域 の変域が動き, グラフが固定された関数の最大最小 グラフの軸や頂点との変域の位置関係が重要 点(2,0), 軸は直線 x=2である。 関数 y=f(x)のグラフは下に凸の放物線で、頂点は (I) 0<a<2のとき f(0)=4, f(a)=(a-2) 2 よって (2) 2≦a < 4 のとき f(2)=0 よって (3) α=4 のとき よって (4) 4 <α のとき よって [軸 lx=2 x=0, ・最小 x=0 で最大値 4, x=α で最小値 (a−2)² グラフは図[2] のようになる。 x=0 で最大値 4, x=2で最小値 0 グラフは図[3] のようになる。 4で最大値 4, x=2で最小値 0 グラフは図[4] のようになる。 x=α で最大値 (a−2)2, x=2で最小値 0 [3] [2] x=a グラフは図[1] のようになる。 最大 x=01 軸 x=2 最小 x=0x=a x=a |x=4 最大 -- x=0 軸 x=2| 最小 [最大] x=4 (4) 4<a の右端 が動く x-0 例えば、αの値を (1) 1 (2) 3 (3) 4 (4) 5 としてグラフを かいてみる。 (1) 軸が定義域の 右外 (2) 軸が定義域内の 右寄り (3) 軸が定義域の 中央 (4) 軸が定義域内の 左寄り x 0 足 x 軸, y 軸を省略して グラフをかくと見やすい。 [4] 軸 x=2 [最大 TRAINING 82 3 定義域が 1≦x≦a である関数f(x)=-(x-3)2 の最大値および最小値を,次の各場 合について求めよ。 ただし,α は α 1 を満たす定数とする。 (1) 1<a<3 (2) 3≦a<5 (3) a=5 (4) 5<a 介 Sofes <カ こちら 01 こちらから WENG

未解決 回答数: 0