学年

教科

質問の種類

数学 高校生

二枚目の赤丸のとこの考え方ってなんのために使ってるんですか?

1 数と式 1 式の値 太郎さんと花子さんは, 問題1と問題2について話している。 ア めよ。 チコに当てはまる数を求 こう解く! 問題 1 を求めよ。 2次方程式 4x+1=0 • ①の二つの解のうち、大きい方をするとき、2-4a+5の値 花子αは方程式 ①の解だから a²-4a+5 (a2-4a+1)+ とすると楽に計算できるよ。 太郎:αの値を求めてから4α+5 に代入すると計算が多くなりそうだね。 1 STEP 方程式の解の意味を押さえよ う 方程式の解は等式を成り立た せる値である。 ①の右辺が0 であることに着目して、求め る式を変形することを考える。 問題2 b= 35のとき、次の式の値を求めよ。 (1) 62+96+1 (2) 63+562+46 太郎: (26+3)イより,bは方程式 ー =0 の解だから (1) は 62+96+1=(62+ウ b+エ)+オ b ■カキ ■ク ■ケ と計算したよ。 (中略) 花子:私は,(2)で違う解き方をしたよ。 +b+エ=0から より 63= 6+ チ ......③ (2)の式に② ③を代入して計算したよ。 数と式 STEP 式の形に着目し, 構想を立て よう 「(bの1次式)=(平方根)」に 変形して両辺を平方すること で, STEP 1の考え方に帰着 できる。 太郎さんと花子さん の解法は少し異なるが,とも に求める式の次数を低くして いる。 No. 解答 問題1について x = q は, 方程式x4x+1=0の解であるから a²-4a+1=0 A が成り立つ。この式の利用を考えると a²-4a+5=(a²-4a+1)+4 B 問題2について =0+4=4 〔太郎さんの解き方〕 6=3+√5 より 2 CA xα 方程式 f(x) = 0 の解の とき B f(a)=0 α-4a+1のカタマリを作り出す。 26=-3+√5 26+3=√5 両辺を平方して (2b+3)=5 46+126+9=5 1 Date C 右辺が平方根だけになるように 変形する。 -3bt x 3: t

解決済み 回答数: 1
数学 高校生

青い丸のとこについて質問です。M(a)−m(a)がaの関数とかかれていますが、M(a)やm(a)自体もaの関数ですよね?初歩的な質問で申し訳ないです。回答お願いします。

Date 7 2次関数の最大・最小/定義域が一定区間 - αを定数とする. 2次関数y=x-2ax+3の0≦x≦2 における最大値 M (α) を,最小値をm(4) とする.M(a), m(a)を求めよ. またM(a) -m (α) の最小値を求めよ. (類摂南大) y=d(x-p)+qのグラフ YA d<0 平方完成 2次関数の値の変化の様子をとらえるには, y=d(x-p2+qの形 (平方完成) にすることが絶対的であって (が1か所にしか登場しないので, 関数値の変化の様子がよく 分かるようになる) 関数値は YA d>0 d0....... |-plが大きいほど大きくなる d<0......x-pが大きいほど小さくなる というように変化することが分かる. q O p x 2 100 最大 最小 下に凸(2次の係数が正)の場合、区間α≦x≦ßにおける最大・最小は下のよう。 al m(a け 最大はこれらを使って y=f(x) (軸) ① (軸) ② ④ ⑤ 6 最大 : 最大 最大: 最小 最小 最大: (7) 最小 X x 84 a B α ẞx a β x 最小はこれらを使って a β a B a Bx aβ a+β 区間の中点 2 最小値は,対称軸が区間内であれば頂点のy座標 (上図②), なければ対称軸に近い方の端点のy座標 である (1,③) 最大値は, 対称軸から遠い方の端点のy座標, つまり対称軸が区間の中点より左側に あればf (B) (④ ⑤), 右側にあればf (α) (⑥ ⑦) である. 解答量 f(x)=x-2ax+3 ⑦ とおくと,f(x)=(x-a)-α+3であるから, y=f(x)のグラフは下に凸で,軸はx=αである. 区間 0≦x≦2における最大値は, 区間の中点がx=1であることから, a≦1 のとき,M(α)=f(2)=-4a+7 (アに代入した) 1≦αのとき,M(a)=f(0)=3 また,0≦x≦2における最小値は,軸が区間に入るかどうかに着目して, 0≦a≦2のとき,m(a)=f(a)=-α+3 a<0 のとき,m(a)=f(0)=3 2<a のとき, m(α)=f(2)=-4a+7 以上からM(a), m(a), M(a)-m(α) は次のようになる。 直線 b=-4a+4 64 [注] M(a), m (α) はαで表され ることから,M(α) -m (a) は a の関数と見ることができる. 軸と区間の中点の位置関係で場 合分けする (上図 ④と⑤のケース と, ⑥と⑦のケースとで場合分 け). 上図の② ①③で場合分けする. mayの場合分 直線 b=4a-4 [0≤a≤2 けは,a≦0 12≦a a M(a) m(a) M(a)-m(a) a<0 -4a+7 0≤a≤1 -4a+7 3 -a²+3 -4a+4 (a-2)² 1≦a≦2 3 - a²+3 2<a 3 -4a+7 a² 4a-4 b=a2 b=(a-2)2 b=M(a)-m(a)のグラフは右図のようになるから, a=1のとき最 としてもよい 境界のα=0, 2 では2つの m(α) の式で通 用し,同じにな るかでミスを 2 a チェックでき

解決済み 回答数: 1