学年

教科

質問の種類

数学 高校生

ガウス記号について理解が浅いのですが、写真の赤線の所はなぜマイナスがでてくるんですか?

500 第8章 整数の性質 *** 例題274 ガウス記号 (1)正の実数xを小数で表したとき,次の値をガウス記号を用いて表せ。 (ア) 小数点以下を切り上げた数(イ) 小数第1位を四捨五入した数 (2) [x+y]-[x] - [y] のとり得る値を求め 2つの実数x,yに対して, よ. 考え方 (1) (ア)は, たとえば, 小数点以下を切り上げると2になる数は, 1.1, 1.8, 2 などが当て はまり,1は当てはまらないことから、1<x≦2 を満たす x である. これを一般 の整数nについて考え,ガウス記号の定義を利用する。(イ)も同様。[] 解答(n-1<x≦n (nは整数)のとき,正の実数xの 小数部分を切り上げた数はnとなる. このとき, -n≦x<-n+1 [-x]=-n Focus (OFF(X)= よって, n=-[-x] より,求める数は, 601 -[-x] 830-1 1 (1) n-1/2/2x<n+1/12 (nは整数)のとき,正の実数 (イ) 71. -xの小数第1位を四捨五入した数はnとなる. このとき、n≦x+ +1/12/<n+1より、 =n よって求める数は1/2 Spot =(1-)!! (2) 0≦x<1,0≦β<1 とすると, x=[x]+α, y=[y]+β と表せるので __ x+y=[x]+[y]+a+ß (0≤a+B<2) (i) 0≦a+β<1のとき [x+y]=[x]+[y] (ii) 1≦a+β<2のとき -1 [x+y]=[x]+[y]+1 よって, (i), (i)より, $30 1- [x+y]-[x]-[y]=0, 1 -*=1 ガウス記号の定義を 利用できるように不 等式を整理する. caf10000 Ft ガウス記号については,まず具体的な数で実験する

回答募集中 回答数: 0
数学 高校生

(2)について、はさみうちを使わずに2枚目のように1^1/∞ = 1と答えるのは間違いでしょうか?

項④4. 基本132 中部大,関西大) +3x+x) して,まずい 分母・分子を ることに注意。 のもよい。 3x² √√x 1 √3x ・分子に -1 を掛け - で割る。 基本例題 134 関数の極限 ( 4 ) はさみうちの原理 次の極限値を求めよ。 ただし, [x]はxを超えない最大の整数を表す。 [3x] xC (1) lim x-x 指針 極限が直接求めにくい場合は, はさみうちの原理 (p.218⑤2) の利用を考える。 n≦x<n+1 (nは整数)のとき [x] = n すなわち [x] ≦x<[x]+1 よって [3x]≧3x<[3x] +1 この式を利用してf(x)≦ [3x] ≦g(x) x (ただしlim f(x)=limg(x)) となるf(x), g(x) を作り出す。なお,記号[]はガウ CHART 求めにくい極限 不等式利用ではさみうち 解答 (1) 不等式 [3x]≧3x<[3x]+1が成り立つ。x>0 のとき,各辺 [3x] [3x] 1 ≤ 3< + ここで, x x をxで割ると Arde ス記号という。 (2)が最大の項でくくり出すと (359(12/12/2)+1}* +] (1/2)" の極限と{(1/3) +1123 の極限を同時に考えていくのは複雑である。そこで、はさ 3< [3x] + 1/ # x x 練習 134 [x]+1から3- って みうちの原理を利用する。 x →∞であるから,x>1 すなわち0< − <1 と考えてよい。 x I im(3-1)=3であるから X このとき すなわち 1 (2) lim (3*+5)* X-8 < [3x] x tom{(1/2)+1)}=1であるから lim² lim x→∞ x [3x] +²=(()*+1}}={(²)+)² =! x→∞であるから,x>10<<1と考えてよい。 XC {( ²³ )* + 1}° <{( ³ ) * +1} * <{( ³ ) * +¹} *--- (*) 3- 3 1<{(1/2)+1/ 1¹ < { ( 3³ )* + 1} * < ( ²³ )* + 1 (1/28) lim =3 1 [3x] < x +1 =1 p.218 基本事項 5. 基本 105 ≤3 5 lim(3* + 5*) * = lim 5{( 3 )*+1} * = 5+1=5 x→∞ X→∞ はさみうちの原理 f(x)=(x)=g(x) で limf(x)=limg(x)=α →∞ 次の極限値を求めよ。ただし[] はガウス記号を表す。 0 [20] 1/²)² + ( ³ ) ²7 ² x-00 ならば limh(x)=α ∞ 底が最大の項5*でくくり 出す。 225 <A> 1 のとき, a <bならば A°<A° である。 (23) +1> (*)が成り立つ。 +1>1であるから、 Op.231 EX100 4章 16 関数の極限

回答募集中 回答数: 0
数学 高校生

⑴がどうしてこう求めるのかよくわかりません。

第9章 整数・数学と人間の活動 Think 素因数に関する問題 **** 例題 254 (1) 301が3で割り切れるとき、んの最大値を求めよ。ただし、は 然数とする. J (2) 100! 一の位からいくつ0が連続する整数か答えよ。 30・29・28・27・・6・5・4・3・2・1 考え方 (1) 30!÷3= |解答 つであるから、3で割り切れるというこ 13603'=3, 32=9, 3°=27, 3‘=81 (30) より 3, 32, 33 について考える。 (ガウス記号を使った素因数の個数の表し方は p.594 を参照 とは, 30! 3 を因数としていくつ含むか考えればよいのん (2) 一の位から続く0の個数は,含まれる因数10の個数に等しいということである。 + 10=2.5 であり, 10は2と5の1個ずつの積であるから, 因数10の個数は、 2と5の個数のうち少ない方となる。 に掛けると、その値がともに (1) 1から30までの自然数について。 3の倍数は, 36, 9, 12, 15, 18,21, 24, 27,300000g= 羽 54 の10個 32の倍数は, 9, 18, 27 の3個 bet 9000 3の倍数は、27の1個 top)+(depe) +(D+offee)= であるから 30! に含まれる因数3の個数は、 次の よって, 314 が題意を満たす最大の値であるから, edda 求めるんの最大値は, k=14₂0PAPARDIS (2) 100! に含まれる因数10の個数は, 10=2.5 より 然目2と5を因数としていくつ含むか調べればよい さらに5を因数として含む個数の方が2を因数と して含む個数より少ないため, 5について調べる. 1から100までの自然数について, 5の倍数は, 5,10,15, 20, 25,5075,100の4個 100の20個 20 の倍数は, (個) 十七itorixe= 10+3+1=14 4 により,100! に含まれる因数5は、20+4=24 (個) であ り,100! に含まれる因数10も24個である。05 +100 24 15 よって求める 0 の個数は, 61 (22+4025 +500) X-W 303の商 30÷9の商 30÷27 の商 1から100までの自然 数 ....., 95, 2の倍数は50個 5の倍数は20個 3の倍数 369 12,15,18,2124,27,30 O, O, O, O, O, O, O, JMMJBS (100)より、 °=125 5と52だけ調べれば よい. 4倍草下 実際,2の倍数だけで も50個ある。」 注》〉 30! に含まれる因数3の個数は次のような表を使うとわかりやすい int 因数10の個数と求め の個数は一致する。 ○ 10 個 表より 30 3 を因数として, 10+3+1=14 (個) 含む. (○は3の倍数に 含まれる因数3 3個を表す) 118 (1) 20! が 2で割り切れるとき, kの最大値を求めよ。 ただし,は自然数と する。 214 (2) 300! 一の位からいくつ0が連続する整数か答えよ.4)( 数の24 2. p.542回

回答募集中 回答数: 0
数学 高校生

問5でなぜ速さが一定となるのでしようか。起電力と誘導起電力が等しくなったのちも、どうせ導体棒には下向きの重力が働いて下向きの加速度が存在すると思うのですが、、

全統模試】 数αは0 Jo 1+x² す定数とす C2:y 有してい 第1回転 全統検 全統 2020 3 (配点33点) 図1のように、鉛直上向きで磁束密度の大きさがBの一様な磁場中に、2本のなめ らかな導体レールXYが開隔で平行に置かれている。2本のレールの左側は水平で1. 同一水平面内にあり、途中から水平面となす角が0となるように傾斜している。水平 (1 部分の左端には、抵抗値R の抵抗R. 切り替えスイッチ S. 起電力の電池Eが接続 されている。 レール関には、長さん抵抗値 R. 質量mの金属棒PP' がレールに垂直 に設置されている。 金属棒PP' は, レールと垂直な姿勢を保ったまま。 レールから外 れることなくなめらかに動くことができる。 抵抗Rおよび金属棒PP 以外の電気抵抗 は無視でき,また, 電流が作る磁場の影響も無視できるものとする。 重力加速度の大き さをgとして, 以下の問に答えよ。 RIIT レール Y 111 R, m レールX 図1 切り替えスイッチSをaにつなぎ, レールの水平部分で金属棒PP'に右向きの初速 を与えたところ、 やがてPP'はレールの傾斜部分に達することなく, 水平部分で 静止した。 問1 金属棒PP' の速さがとなったときを考える。 このとき、 金属棒PP' をP'か Pの向きに流れる電流の大きさをIとする。 (1) 金属棒PP' に生じる誘導起電力の大きさを, B, を用いて表せ。 (2) 抵抗 R と金属棒PP' からなる閉回路について, キルヒホッフの第2法則を表 す式を書け。 R, I L, B, を用いて表せ。 (3) 金属棒PP' の運動方程式を書け。 ただし, PP' の加速度は右向きにaとし a LLBを用いて表せ。 (4) 加速度αを, m, R, LB, を用いて表せ。 問2 金属棒PP' が動き出してから静止するまでの間に、 抵抗 R で発生したジュール 熱を求めよ。 次に, 切り替えスイッチSをbに接続し, 金属棒PP' をレールの水平部分で静かに 放す。 このとき, 金属棒PP' は傾斜部分に達する前に一定の速さとなり、その後レー ルから離れることなく傾斜部分を運動するようになった。 問3 金属棒PP' の水平部分での一定の速さを求めよ。 問4 傾斜部分を運動し、金属棒PP' の速さがとなったとき、 PP' の加速度を求めよ。 ただし、加速度は斜面に沿って下向きを正の向きとする。 5 やがて金属棒 PP は傾斜部分で一定の速さとなる。 このときの電池の供給電力 をW, 抵抗 R と金属棒PPでの消費電力の和をPとする。 一定となった速さを、 W, P.m, g, eを用いて表せ。 usina ひひ V=UBX 30 IBR 運動方程式 ・3 →ひ 5, -B 運動方程式 usont (2) ZRI=ひBℓ (3) ma=-IBR (4) 3 問2.RとPで発生したジュール熱の和は1/21m² どちらも抵抗値が同じなのでRでのジュール熱は Q = = = =^ mus ² = = myst 3, BO aBl →F md = ミラデ+I'Bl TB 一定の速さ⇒ al=0. E Bl a=- DATE IBT ucose [Bl coso UB²³1² 2m² 導体棒の速さがひとなった時 ザックの法則 E-UBX= ZRI! 4 3 E ・千 mgy PPに流れる電流ⅠはRRI=E-UBWSO Ⅰ = (E-uplus) Bl 2R 4 a's (E-VB) Bl 2m ma= mgsing + IB co so a= gsind t 15ftinec w+msing xひたエレン ==ma². (E-valcoso) By coso 2 91= Wil cost ネルギー保存 (Wingsing. u = (P) P-W mgsing 2 辞ックのし 仕

回答募集中 回答数: 0
数学 高校生

分かりません。教えてください!

計算問題の場合は必ず、 公式→数値代入→答えの順番で記入すること。 配点は全て2点 合計52点分 つぎ 問1 次の文章を読み「 内に当てはまる言葉を書き入れなさい。 (1) 時間や温度、面積や容積などのように、大きさだけで表される ① だかい (2) ①に対し、力や速度、磁界のように大きさと ② を持つ蓋を③ ひょうじゅうほう ASD 423225 (3) A=(ab)のような表示方法で表す方法をベクトルの ④ 表示という。 お +422 Asa 315 (4) A=ALΦのような表示方法で、大きさと位相差を表す方法をベクトルの ⑤ 表示という。 という。 (5) 交流回路において抵抗だけの回路は、電流と電圧vの位相差は無い(位相差0)。この状態を⑥という。 あちお (この回路において、抵抗R [Ω]、電圧V[V] と電流I [A]の関係は、I=⑦ で表す。 という。 あられ こうちゅう (7) 交流におけるインダクタンス (コイル)だけの回路において、電流の流れをさまたげる働きを持つものをX=WL=2Lです。この×⑧とい う。なお、この回路において電流は電圧vより位相が="[rad] 40 (8) XL [9] はインダクタンスL [H] と周波数 [Hz] の横に⑩する。 (9) 交流におけるコンデンサだけの回路において電気の流れをさまたげる働きを持つものをXc で表し、次のような式 1 1 @C 271C (10) Xc [2] は、 静電容量C [F] と周波数 † [Hz] の積に 13 で表す。このXを① ]という。この回路において電流は電圧vより位相がゆ=-radlだけ⑩ 2 10 する。 とには進むまたは遅れるのいずれかが入る。また、10分には比または反比例のいずれかが入る。 ② 3 4 8

回答募集中 回答数: 0