学年

教科

質問の種類

数学 高校生

問題の下の解説の「x,yの2次式の因数分解」 のところで、展開をしなくていいのは、 展開した式を入れ替えても答えは同じっていう 性質があるからですか?

2 因数分解/2次式 つぎの式を因数分解せよ. (酪農学園大酪農, 環境) (北海学園大工) (東北学院大・文系) (1) (a-b+c-1) (a-1)-bc (2) 4.2-13zy+10y2 +18æ-27g+18 (3)(x+2y) (æ-y)+3y-1 因数分解では最低次の文字について整理する 2文字以上が現れる式の因数分解の原則は,最低次 その文字 (複数あるときはどれか1つの文字) について整理することである. 一般に,次数の低い式の方 が因数分解しやすい. 仕 解答 xyの2次式の因数分解 原則に従えば,xか」について整理するところであるが,(3)において (x+2y) (x-y) を展開して整理するのはソンである. 「x+2y」 「x-y」 を用いて解答のように「たす きがけ」をすればよい。 (2)も, x,yの2次式の部分を因数分解すれば同様にできる(別解) 慣習 因数分解せよ,という問題では,特に指示がない限り, 係数が有理数の範囲で因数分解する. (2) (3) ((+23)(x-3) + 33-17 (1) まずcについて整理することにより, 与式= {c(a-1)+(a-b-1) (a-1)}-bc ←与式はαについては2次だが, b やcについては1次. =(a-b-1)c+(a-b-1) (a-1)=(a-b-1)(a+c-1) (2) まずェについて整理することにより, (-a+b+1)(-a-c+Uod 与式=42-(13y-18)x + (10y2-27y+18) =4x²-(13y-18)x+(2y=3) (5y=6)... x= ={x-(2y-3)}{4m-(5y-6)} 2 × ①+56 7-2 →27 ←1 -(2y-3) × -(13y-18) =(x-2y+3)(4x-5y+6) 14 -(5y-6) 注 ① におけるたすきがけで, 試行錯誤するのを避けるためには, ①= {ar-(2y-3)}{bx-(5y-6)} とおき, 展開して係数比較すればよい. æの係数は (yは定数と見る), -{(5a+26)y- (6α+36)} となり, ー (13y-18) と一致するので 5α+26=13,6a+36=18. これを解いて α= 1, 6=4となる. (3) 与式={(x+2y)-1}{(x-y)+1} てんか =(x+2y-1)(x-y+1) 【別解】 (2) [x,yの2次式の部分をまず因数分解して, (3) と同様に解くと] であるから, 4.2-13ry+10y2=(x-2y) (4π-5y) 与式= (x-2y) (4-5y) + (18-27y) +18 このときの係数も一致する. x+2yx-13y x-y →-13 12--13 0 4 -5 ={(x-2y)+3}{(4x-5y)+6} =(x-2y+3)(4x-5y+6) 2 演習題(解答はp.22) (1) (ry) (x+y-z (z+2y) を因数分解せよ. (2) 3a+26+αb +6 を因数分解すると d)( x-2y 3 4x-5y 6 × -18x-27y 13) (48 (北海道薬大) である.また, (1) である. (3)は,例題 (2) と同様 (岐阜聖徳学園大) に2通りのやり方があ (静岡産大) . ry+xz+y2+yz+3 +5y+2z+6 を因数分解すると (3) 8-18y2+10x+21y-3 を因数分解せよ.

回答募集中 回答数: 0
数学 高校生

x+y+z=0の場合も考えないといけないのはなぜですか?

y+z=2 x 日本 例題 26 比例式の値 y z+x=x+y ①①①①① Z のとき、この式の値を求めよ。 基本25 CHART O OLUTION 比例式は=kとおく ...... ****** ・ x y+z_z+x_x+y=k とおくと 解答 等式の証明ではなく, ここでは比例式そのものの値を求める y 2 この3つの式からkの値を求める。 辺々を加えると, 共通因数 x+y+z が両辺 にできる。これを手がかりとして, x+y+zまたはkの値が求められる。 求め の値に対しては,(分母)≠0(x0,yキ0,z≠0) を忘れずに確認する。 分母は0でないから 2+x_x+y= y+z=xk, z+x=yk, x+y=zk xyz=0 _XT =k とおくと X y 2 xyz = 0x≠0 かつ y=0 かつz0 y+z=xk ①, z+x=yk ①+②+③ から 2(x+y+z)=(x+y+z)k ・・②, x+y=zk ③ よって ゆえに (-2) (x+y+z)=0 k=2 または x+y+z=0 [1] k=2 のとき x+y+zが0になる可 能性もあるから, 両辺を これで割ってはいけな ① ② ③ から y+z=2x ④,z+x=2y ****** ⑤ x+y=2z ****** ⑤から y-x=2x-2y よって ⑥ x=y これを⑥に代入すると x+x=2z よ よって x=z したがって x=y=z x=y=z かつ xyz ≠0 を満たす実数x, y, zの組は存在する。 [2] x+y+z=0 のとき y+z=-x _y+z=x=-1 よって k=1 x x [1], [2] から, 求める式の値は 2,1 INFORMATION 例えば x=y=z=1 例えば,x=3, y=- z=-2 など, xyz キ かつ x+y+z=0 を たす実数x, y, zの 存在する。 ①~③の左辺は,x,y,zの循環形 (x→y→z→x とおくと次の式が得られる) なっている。循環形の式は、上の解答のように,辺々を加えたり引いたりするとう くいくことが多い。 一般には, 連立方程式を解く要領で文字を減らすのが原則であ

未解決 回答数: 0
数学 高校生

ナイロンは分子間に水素結合をするため強度が強いと問題集にありました。どこに水素結合がありますか?

A 縮合重合開環重合による合成繊維 -p.354 る高分子化合物をポリアミドという。このとき, アミンのNH2とか ●ポリアミド系繊維 多価アミンと多価カルボン酸の縮合重合で得られ ルボン酸のCOOH の脱水縮合によって, アミド結合 -NH-CO- がで polyamide アミド結合 もつ きている。鎖状のポリアミドを繊維にしたものをポリアミド系繊維と いう。 (1) ナイロン 66 ヘキサメチレンジアミン H2N- (CH2)6-NH2とアジ エン酸 HOOC-CH2) 4-COOH の縮合重合によって, 鎖状の高分子化合 1 物であるナイロン66(6,6-ナイロン)が得られる。 sunylon p.397 コラム "H-N-CH2)6-N-H + "HO-C-(CH2)4-C-OH T H I ce (C63 C650 H メチレンジアミン アジピン酸 -CH2 NH₂ アミド結合 縮合重合 -N-(CH2)6-N-C+(CH2)4-C+ | || H HO ナイロン66 △実験 21 ナイロン66をつくってみよう(p.399)。 (2)ナイロン6 環状のアミドであるカプロラ クタムに少量の水を加えて加熱すると,環がア ミド結合の部分で開いて次々と結合し、鎖状の 高分子化合物である ナイロン6 が得られる。 3 かいかん また,このような重合方法を開環重合という。 + 2H2O (1) 図3 釣り糸(ナイロン) ring-opening polymerization CH2 H2C CH2 +H₂O +C-(CH2)5-N+ nH2C. CH2 II (2) 開環重合 0 H N+C カプロラクタム HO ナイロン 6 環状 15 単量体のアミンのC原子の数が6, カルボン酸のC原子の数が6であることから、順 に数字を並べてナイロン66 とよばれる。 (1)式の右辺を,分子の両端のH-OH を明示して,次のように書くこともできる。 H+NH-(CH2)6-NH-CO-(CH2)CO+, OH + (2n-1)H2O 通常, nは非常に大きいので,本書では分子の両端を無視して (1) 式のように書く。 3 ナイロン6 の製造法は, 1941年に日本で開発された。 398 第5編 高分子化合物

未解決 回答数: 0