学年

教科

質問の種類

数学 高校生

数IIの三角関数の問題です。 合成なのですが、答えと全く合わないため、解説をお願いします。

D 頻出 164 三角関数の最大・最小 〔4〕 合成の利用 ★★☆☆ = sin-√3 cost(0≧0≦z)の最大値と最小値,およびそ 10200+0mie (1) (1)関数y= のときの0の値を求めよ。 関数y=asin+coco (004)の最大値と最小値を求めよ。 lioAction asin0+bcos0 は, rsin (0+α) の形に合成せよ 例題 163 サインとコサインを含む式 (1) y=sine-√3 cos 0≤ B VII 0 0- sin0- ≤π S 図で考える nie) S-ynia 1 y = ↓ 2 sin (0) サインのみの式 A- (2) 合成すると,αを具体的に求められない。 3 OB 1 x 1 章 10 →αのままにして, sinα, cosa の値から,αのおよその目安をつけておく。 加法定理 (1) y=sine-√3 cose 元 =2sin0 in (0 3 as π より π ≤ 0- 3 3 23 よって 12 * sin(0-4)≤1 3 -√3≤ 2sin(0-3)≤2 y x 3 π COS 20 -√3 P nie 0800+ ite したがって T 20- 3 2 0-2 = 1 すなわち のとき 最大値2 5 0 = 020 2 O 11 1x 3 2 πのとき最大値2 3-1=3 π π 0- すなわち 0=0 のとき 最小値√3 3 3 3 例題 162 (2)y=4sin0+3cos0=5sin (0+α) とおく。 5 a 4 3 ただし, α は cosα = sina ... 15 ① を満たす角。 0 4 x π 2 π YA 0= 2 0≤0≤ より asta≦ +α ① より 0<a< であり, sina <sin (+α)である π 4 3 から sin (0+α) ≦1 5 大量 10 <3> a -1 04/1 x sin (+α) 5より, yは 最大値 5, 最小値 3 sina sin(+α) ≦1 164(1) 関数 y=sing-cost (0≦0≦x) の最大値と最小値, およびそのときの 0 の値を求めよ。 37851=0200+ Onia (1) sin+cosx) の最大値と最小値を求めよ。

未解決 回答数: 3
数学 高校生

⑶の最後のシャーペンで囲ったところがなぜそうなるのかわかりません

56 第1章 数列の極限 例題21 a1=4, an+1= 6 (n=1, 2,3,......) で定義される数列{an} について,次の問いに答えよ. (1) 1<a≦4 を示せ. (3) limam を求めよ. 1140 考え方 (1) 数学的帰納法を使う. n=kのとき, 1 <a≦4 が成り立つと仮定して n=k+1 のときも成り立つことを示す. 数学的帰納法と極限 an²+5 6 (2)(1)で示した 1<a,≦4 を利用できるように,Qn+1−1=ℓ 解答 (1) 1<a, ≤4 ・・ ① とおく . (I) n=1のとき, α=4 より ① は成り立つ. (II)n=kのとき, ① が成り立つと仮定すると.. 1<a≦4 より る. (3)(2)で示した不等式を利用して, 例題 17 (p.47) と同様にして極限値を求めればよい。 数学的帰納法で示す。 (2) an+1−1= 21 つまり, 1<ak+1 <4 6 EV EV したがって,n=k+1 のときも ① は成り立つ . よって, (I), (ⅡI)より すべての自然数nについて 1 <a≦4 が成り立つ. 6 an+1 6 よって, 1²+5__a²+5_4²+5 6 6 6 an²+5 VII 6~1 an²-1 6 = (a + 1)(α =1) ここで、1<a≦4より, an+14+1 (2) an+1−1≦22 (an-1)を示せ . 5 6 6 OHA この形つくりたいから (an+1)の方もってくる (an+1) (an-1) ≤=(an — 1) ww 5 an+1−1≤ (an-1) ***** ….... ② (0) a2+5_1 の右辺を変形す 仮定した式について 1.各辺を2乗する。 2.各辺に5を加え 3.各辺を6で割る. 2150 PAR an+1−1 と an-1の 10 関係式にする. 因数分解して次数 下げるのと同時に (a-1)を作る. 各辺に1を加えて で割る. 0.0.9 an-1>0 >1より,

未解決 回答数: 1