学年

教科

質問の種類

数学 高校生

合同式を用いた回答の方が分からないのですが、なぜ偶数と奇数で場合分けをしているのですか?

534 ME XX 00000 重要 例題 100 等差数列と等比数列の共通項 列{an}の項でもあるものを小さい方から並べて数列{cn} を作るとき, 数列{cn 数列{an}, {bn}の一般項を an=3n-1,bn=2” とする。 数列{bn}の項のうち、数 の一般項を求めよ。 重要 93 基本 99 指針▷>2つの等差数列の共通な項の問題(例題93) と同じように,まず,a=bmとして、1mの 関係を調べるが, それだけでは {cn}の一般項を求めることができない。 そこで, 数列{an}, {bn} の項を書き出してみると,次のようになる。 (an): 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, {bn}:2,4,8,16,32, Handlin を順に調べ、規則性を Ci=b, Ca=b3, C3 = bs となっていることから,数列{bn}を基準として, 6m+1 が数列{0.² の項となるかどうか, bm+2 が数列{an} の項となるかどうか、 見つける。 解答 a1=2, b=2であるから C1=2 数列{an}の第1項が数列{bn}の第m項に等しいとすると 3l-1=2m U-18 ゆえに bm+1=2m+1=2m・2=(3-1)・2 = 3.21-2 よって, bm+1 は数列{an} の項ではない。 ①から bm+2=26m+1=3.4l-4 =3(4-1)-1 ゆえに, bm+2 は数列{an} の項である。 したがって {C}:b1,63,65, 数列 {cm} は公比 22 の等比数列で, C1 = 2であるから Cn=2.(22)"-1=22n-1 22n=4"=1"≡1(mod3) [2] m=2n-1(nは自然数) とすると 規測性から 答えを予想はできたこ SS 3・O-1 の形にならない。 JANE 重要 初項が 10g10 3= 141) 10 △×(2) 初 30 \-=b (s) 7V=5,2V=D 検討 合同式(チャート式基礎からの数学A 参照) を用いた解答 3n-1=-1≡2(mod3) であるから, 2" = 2 (mod3) となるmについて考える。 [1] =n(nは自然数) とすると 1970 4" cn=122 などと答えてもよ L 22n-1=22(n-1).2=4”-1.2=1"-1.2=2 (mod3) [1],[2] より,m=2n-1 (nは自然数) のとき 2” が数列{cm} の項になるからコ Cn=bzn-1=22n-1 指針> 練習 数列{an},{bn}の一般項をan=15n-2, bn=7.27-1 とする。 数列{bn}の項のう (4) 100 ち,数列{an}の項でもあるものを小さい方から並べて数列{c,}を作るとき, 数列 {cn}の一般項を求めよ。 .631 02 解答 (1) 初 103- 各 ゆ よ す n G

回答募集中 回答数: 0
数学 高校生

cosθ-1=0になる理由がわかりません...

2 の値が におく。 する 。 あるか = √9 おく して 辺を 基本例題150 三角方程式・不等式の解法 (3) ・・・ 倍角の公式 0≦0<2πのとき、次の方程式,不等式を解け。 (1) sin26=cose 指針 解答 (1) 方程式から 2sinAcos0=cos0 ゆえに 2倍角の公式 sin20=2sinocoso, cos 20=1-2sin'0=2cos²0-1 を用いて, 関数の種類と角を0に統一する。 ② 因数分解して, (1) なら AB = 0, (2) なら AB ≧0の形に変形する。 ③ -1≦sin 0≦1,-1≦cos 0 ≦1に注意 して, 方程式・不等式を解く。 CHART 020が混在した式 倍角の公式で角を統一する cos (2sin0-1)=00 cos0=0, sin0= よって 0≦0 <2πであるから COS6=0 より sin0 == より 9 = 2/1/21* 以上から,解は 0= 0= 0= 兀 3 2' 2 5 6'6 π よって したがって,解は 0=0, 11 (2) 不等式から 整理すると ゆえに 0≦0<2πでは, cos 0-1≦0 であるから TC TC π 5 π, 6'2 6 2 2cos20-1-3cos0+2≧0 π π cos 0-1=0, 2 cos 0-1≤0 cos0=1,cos0≦ -≤0≤. 1 2cos20-3cos 0+1≧0 (cos 0-1)(2cos 0-1)≧0 5 3 (2) cos 20-3 cos0+2≧0 2 1 2 π π 2942 2 YA 1 0 -1 1 ON -1 6 voles 5 1 x 11 2 AND x 基本149 sin20=2sin Acos A 種類の統一はできないが, 積=0 の形になるので、解 決できる。 AB=0⇔ A = 0 またはB=0 sin0= -1/23の参考図。 cos 0 = 0 程度は図がなく しても導けるように。 cos 20=2cos20-1 235 cos 0-1=0 を忘れないよ うに注意。 今号の参 なお,図は cost≦ 考図。 4章 25 加法定理の応用

回答募集中 回答数: 0