学年

教科

質問の種類

数学 高校生

ヵが分かりません。 1枚目に記載してる写真を見て欲しいのですが、そこにシャーペンで書いてある①??と②??を教えて欲しいです。 なぜ成り立つのか分かりません

① 異なる素数 p q r を用いて 以上より、nが最大となるのはn=12のときであ り, n=12となるのは (i) より 23x32=72 25x3 = 96 (Ⅲ)より 22×3×5=60 22×3×7=84 2×32×5=90 であるから,全部で5個ある。 第5問 (1) APC は, △APC を点Cのまわりに時計回り に60° だけ回転移動した三角形であるから したがって AA'P'C=AAPC AP = A'P' B C (2)時計回りに回転移動する角が 60°のとき. △ACAは正三角形となるから, AA' = AC は成 り立つ。しかし、時計回りに回転移動する角が 60° でないときには,AA'ACは成り立たないこと がある。 ①④ 時計回りに回転移動する角の大きさによら ず△APC APC であるから, AC = A'C, CP=CPは成り立つ。 ②③時計回りに回転移動する角が60°のときに も, AP = AP', APPP'は成り立たないことが ある。 A'D' LAB であるから、APP ABPPは合同な正三角形 である。 よって ∠APB= ∠CQD=60°+60° = 120° ② <BPP=60° より ∠APP=60°であるから AP = BP=CQ=DQ より =1/AB = 4√3 3 1 sin 60° ? PQ=4-2BP cos60°=4- AP + BP + PQ + CQ + DQ 4√3 -4 +4 - 4/3 3 =4+4√3 A 4√3 CP = CP ② ② および P'CP = 60° より, △PCPは正三角形 であるから CP = PP' ③ よって、 ① ③より AP + BP + CP = A'P′ + BP + PP′ ④ A' P ⑤ 時計回りに回転移動する角が 60°のとき, △PCPは正三角形となるから, CP = PP'は成り 立つ。 しかし、時計回りに回転移動する角が60°で ないときには, CP = PP' は成り立たないことがあ る。 ➡0, ⑤ (3) 次の図のように, ABP を点Bのまわりに反 時計回りに 60°回転移動した三角形を A'BP/ △DQC を点Cのまわりに時計回りに 60°回転移動 した三角形を DQO とする。 P P A' B B -C A' 点Pの位置が変化すると,それに応じて点P'の 位置も変化するが, 点Bと点 A' の位置は変化し ない。 B D' よって, 2点P, P' が直線 A'B 上にあることが あれば、そのときに AP + BP + CPは最小となる。 ③ △PCPは正三角形であるから, 4点 A', P', P, Bが一直線上にあるとき ∠BPC = 180°-∠P'PC = 120° ④ ここで, △ABC は鋭角三角形であり, 内角はすべ 120° よりも小さい。 したがって、点Pは確かに △ABC の内部にある。 (1)と同様に考えて AP + BP + PQ + CQ + DQ =AP + PP + PQ + QQ + QD] であるから, 4点 P', P, Q, Q' が直線 A'D'上に あるときに AP + BP + PQ + CQ + DQ は最小と なる。 △PPB, QCQ' は正三角形であるから, 6点 A', P', P, Q, Q', D' が一直線上にあるとき AAA'BADD'C である。 さらに,正方形と正三角形の対称性より -③-9-

回答募集中 回答数: 0
数学 高校生

緑線のところがよく分かりません 解説お願いします

例題 139 球と接する立体 **** 右の図のように、底面の一辺が長さ2の正方形, 側面 の4つの三角形がすべて二等辺三角形である正四角錐 D S1 C OABCD がある.また, 球 S, はこの正四角錐の5つのSa 面と接し, 球S2はこの正四角錐の4つの面と球Sに 接している. 球SとS2の半径の比が2:1 のとき, 正四角錐 OABCD の高さを求めよ。 出 TAM B 考え方 辺 AD, BC の中点をそれぞれ M, Nとし,平面 OMN で切った切断面を考える. 解答 球 S1 S2 の中心をそれぞれP, Q とし. 0 半径をそれぞれ, 2 とする. また 辺 AD, BC の中点をそれぞれ M. Nとし, この正四角錐 OABCD を平面 12 高さ OH を含み、球 L と正四角錐の接点を 円 OMNで切ったときの切断面を考え,球 S1, S2 と辺OM の接点をそれぞれK, Lとし, 球 S1 と辺 MN の接点をHとする. P 通る平面 OMN で切 ると考えやすい. 第4 球 S と S2 の半径の比は 2:1より, M H N r1=22 また△OPK∽△OQL であり,相似比は 2:1LQ よって, |OQ=PQ=ntr2=2r2+r2=3/2 r2 QL 12 1 また. <QOL=0 とおくと. sin0= = OQ 3r2 3 KriP 2√2 ここで,0°<B<90° より, cos> 0 だから, cos = sin20+cos20=1 3 sine 1 M したがって, tan 0= = cos A 2√2 0 また, MH==MN= -1/2MN=1/2AB=1 2√21 MH 1 MH =2√2 tan0= よって, OH= OH tan 0 1 2√2

未解決 回答数: 0
数学 高校生

(2)で「-1/√3<m<1/√3」からXの範囲を求めるとき、 解答のようにではなくて、三枚目のように考えてしまいました。 これでうまく求められないから、 解答のようにYの範囲を求めて図を描くことで、Xの範囲を求めよう! っていう思考回路ですか?

偶数の関係を使った ④よりm=1/2で⑤に代入しY=1/2x2-2x ③ ④ により,X < 0 または 8 < X 2 X,Yをx, y に書き換え, 求めるMの軌跡は よって, X=2m……… ④ であり,Mは①上にあるから,Y=mX-4m...⑤ X D=m²-4m>0 .. <0 または 4<m (3)P,Qの座標をα,βとし,M(X, Y) とおくと,x=α+B αβは②の2解であるから,解と係数の関係により,a+β=4m 2 ③ これから軌跡の限界が出てく P,Qの座標をm で表す必要 このようなときは具体 急がず、とりあえず文字でお ⑤ではなく. 34 y=14x²-2x Y= 16 y= x²-2x (x<08<x) であり,右図太線である (○を除く) 8 I 1-1/2 (+) (a+B)-2a8 8 =2m²-4m と ④ からYをXで表しても たことはないが(本間の場 ⑤ (直線上にあること)に着 るのがうまい。 補助に考える。 円が を通るときは別に調 く。 12 演習題 ( 解答は p.104) 円(x-2)2+y2=1と直線y=mzが異なる2点P, Qで交っているとき, (1)の値の範囲を求めよ. (2) 線分 PQ の中点Mが描く軌跡を求め, それを図示せよ (軌跡に端点がある場合は その座標を明示せよ). (群馬大理工,情/改題) Mが直線上にある をうまく使う、なお 形的に解くことも る.

回答募集中 回答数: 0
数学 高校生

(3)を解いてみました。私の解答でmの存在条件を考える時、 2m=Xと-8m=Y の両方の条件を使えばいいのか、 またはどちらかを使えばいいのか分かりませんでした。

ヨチェク ①8/130 to 212 12 軌跡 / パラメータを消去 座標平面上に直線1:y=mz-4mと放物線y=1がある.mは,IとCが異なる2点P, Qで交わるような値をとるとする.また, 線分 PQ の中点をMとする. (1) 1はmの値にかかわりなく、 ある定点を通る。 この点の座標を求めよ。 (2) m のとりうる値の範囲を求めよ. (3) Mの軌跡を求め, 座標平面上にそれを図示せよ。 (南山大 外国語, 法) 軌跡の素朴な求め方 動点の軌跡の素朴な求め方は,動点M(X, Y) を原動力 (本間ではm, 以下 パラメータと呼ぶ) で表して, それがどんな図形であるかをとらえる方法である。 直接読み取れること もあるが、一般的には,パラメータによらないXとYの関係式 (パラメータを消去した式) を作ること で、 軌跡の方程式を求めることになる。 なお、 実際にはXとYの関係式を作るとき、必ずしもX,Yを パラメータだけで表した式を用意する必要はない. 本間の場合 「Mが上」 に着目するのがうまい。 「軌跡」 と 「軌跡の方程式」 問題が「軌跡を求めよ」という要求なら, 軌跡の限界 (範囲: 不等式) を考慮しなければならないが,「軌跡の方程式を求めよ」 という要求ならば、その必要はなく、単に方程 式 (等式)を求めるだけでよい,というのが慣習である。 本間 (3) の場合 Mのx座標は,解と係数の関係を使う. y座標は1の式から (2) にも注意. 解答量 (1) 直線/は,y=mx-4m ①の右辺をmについて整理して,y=m(x-4) これは定点 (40) を通る. (2) y=1/2と①を連立して得られる方程式 ・① M C 1なければ主と 依存して パラメータでおし 1 r²-mx+4m=0· ・② 4 x 4 a XOB が異なる2つの実数解を持つ. 判別式をDとすると, D=m²-4m>0 m <0 または4<m (3) P,Qの座標をα βとし, M(X, Y) とおくと, X=- a+B 2) ・・・③ これから軌跡の限界が出てくる. PQの座標をm で表す必要はな い。 このようなときは具体化を 急がず、とりあえず文字でおく α, βは②の2解であるから,解と係数の関係により, a+β=4m よって、X=2m であり,Mは①上にあるから,Y=mX-4m⑤⑤ではなく、 =1/2で、⑤に代入しY=1/2x2-2x ④よりm= ③ ④ により,X < 0 または 8 < X X,Yをx, y に書き換え, 求める M の軌跡は 1 y= x²- ーー2x (x<0または8<x) であり, 右図太線である (○を除く)。 16 y=x²-2xy=- 04 8 x 1/2 B2 4 (a+8)2-2aß JA8 =2m²-4m と ④ から Y を X で表しても大し たことはないが (本間の場合), ⑤ (直線上にあること)に着目す るのがうまい人、 12 演習題(解答は p.104) 円 (x-2)2+y2=1と直線y=mz が異なる2点P Qで交っているとき, (1) m の値の範囲を求めよ. (2) 線分 PQ の中点Mが描く軌跡を求め, それを図示せよ (軌跡に端点がある場合は 今の座標を明示せよ ). (群馬大・理工, 情/改題) Mが直線上にあること をうまく使う なお、図 形的に解くこともでき る. 91

回答募集中 回答数: 0
数学 高校生

(3)の問題です。 ④の部分なのですが、何故④の右辺は3の倍数と言えるのでしょうか…? 3の倍数ではなく、9の倍数であると私は考えました。それとも、9の倍数という集合の中に3の倍数という要素が入っているから、3の倍数と言えるのでしょうか。

月理法は目が生じたら 17 無理数の証明, 背理法 m を整数とし,2つの命題 (P),(Q)について考える. (P)が3の倍数ならば, mは3の倍数である (Q)/3は無理数である (1) 命題 (P)の対偶を述べよ. (3) 命題 (Q)を証明せよ . 解答 (1) 命題 (P) の対偶は, (2) 命題 (P)を証明せよ. (西南学院大) mが3の倍数でないならば,mは3の倍数でない (2) 命題 (P)の対偶が真であることを示す. mが3の倍数でないとき,整数kを用いて, m=3k+1,3k+2とおける. (ア)m=3k+1のとき m²=(3k+1)=27k3+27k+9k+1=3(9k+9k2+3k)+1 となるので, は3の倍数でない. (イ)m=3k+2のとき m3=(3k+2)3=27k3+54k²+36k+8=3(9k+ 18k +12k+2+2 となるので,'は3の倍数でない. (ア)(イ)より,命題 「m が3の倍数でないならば,mは3の倍数でない」は真で ある. したがって,命題 (P) の対偶が真であるから,命題 (P)も真である.すなわち, 命題(P)が成り立つことが示された. <補足: 合同式を使うと, (ア)(イ)は次のようになる > (ア)≡1(mod3) のとき, m²≡1(mod3) (イ)=2(mod3) のとき, m²=23=8=2(mod3) (3) 3/3 が無理数であることを,背理法を用いて証明する. 33が無理数ではない,すなわち, 33 が有理数である 無理数であることの証明は,有理数であると仮定して、 背理法によって示すことが一般的である と仮定すると, 33=127 (p, gは互いに素な自然数) ①pg を 「互いに素」として おくことを忘れない! とおける. ①より3pg となり,これを3乗すると, 3p3=g3 ·② ②の左辺は3の倍数であるから, 右辺のも3の倍数である. よって, 命題 (P) から, gは3の倍数

未解決 回答数: 1