学年

教科

質問の種類

数学 高校生

この問題はなぜf(x)=の判別式の値をもとめるのですか?

25 とグラフ 常に成り立つ2次不等式 RE 常に成り立つ2次不等式とグラフ コツ 28 2次不等式f(x)>0やf(x)≦0などが常に成り立つ条 件を求める問題では, y=f(x)のグラフを考えて 「常に0より大」 ということは, グラフにすると? その発想が大切。 例題 3-38 定期テスト 出題度 900 共通テスト 出題度 任意の実数に対して次の不等式が成り立つとき、定数kの値 の範囲を求めよ。 (1) 2x-8kx+13k²-20>0 (2) kx²+(2k-4)x+2k-750 (k=0) ●上に凸か下に凸か ② f(x)=0としたときの判別式Dの値 の2点に着目する。 さて、2次関数y=f(x) のグラフは以下の6つのどれかになるんだ。 判別式 は3-1で説明したから, 忘れてたら復習してね。 ○0 「なんか難しそう………………。」 1-20 の最後で勉強したね。 “任意の” は, "どんな○○でも” や “すべての ○○で”という意味だよ。 (1) 「はい、それは覚えてますけど、 “すべてのxで不等式が成り立つよう にする”なんて、どうやって考えればよいのですか?」 こういった問題は2次関数のグラフを使って解いていくんだよ。 「どうやって使うんですか!?」 具体的に進めていけばわかるよ。 まず手順をコツにまとめておくね。 y=f(x) y=0 (軸) f(x)=07"D>0 D=0 D<o 下に凸 I I 上に凸 (1)なんだけど, “常に正” ということは、上の6つのグラフのどれ 「⑤ですか?」

未解決 回答数: 0
数学 高校生

至急お願いします🙇 数Iの範囲なのですが解説が載ってなくてどうしてこの答えになるかがわからないので解説お願いします🙇 問2全部です

22:57 1月28日 (火) PDF } ああ 今] 80% サムネールを表示 Ⅱ 以下の問いに答えなさい。 問1 kを0でない実数とする。 xの2次方程式 x2 (3k+7)x +5k = 0 と x2+ (3k-3)x -5k = 0 が共通の解をもつとき,kの値と共通解を求めなさい。 問2 下の図は, ある日のある時刻に, 直進する太陽光が建物 (図の長方形) によって遮られ, 地面に 影が出来ている様子を表す。 図において, 影と日向(ひなた)の境界である点Aと建物の壁の点 Bの距離は360√3cmであり, 太陽光と地面のなす角 (∠BAC) は30° である。 (1) この建物の高さを求めなさい。 (2) (1)において, 身長160cmの人が建物から離れたところに立っている。 ここで, 人を線分 XYで表し, 端点Xは頭部を表すとする。 夏の猛暑のため、この人は日陰に近寄ろうとして 地面に出来た建物の影の部分に立っているが, 頭部 X は太陽光に当たってしまっている。 この人の頭部が太陽光に当たらないようにするためには, 点Bから何cm以内まで近づけば よいか。 図を参考にして答えなさい。 A 人 X 30° 日向 A Y (ひなた) 日陰 B ............... 太陽光 建物

回答募集中 回答数: 0