学年

教科

質問の種類

数学 高校生

1番最後の[1][2]から、というところですが、 なぜ(-1)ⁿではなく(-1)ⁿ+¹なんですか💦

例題 28 重要 に分けて和を求める 00000 一般項がαn=(-1)"+1n2 で与えられる数列{an} に対して,Sn=ak とする。 (1) a2k-1+a2k (k=1, 2, 3, ......) を ん を用いて表せ。 (2) Sn= (n= 1, 2, 3, ......) と表される。 k=1 次のように頭を2つずつ区切ってみると Sn=(12-2)+(32-4)+(52-62)+...... =b₁ =b₂ 指針 (2) 数列{an}の各項は符号が交互に変わるから,和は簡単に求められない。」 =b3 ****** 上のように数列{6} を定めると, bk=a2k-1+αk (kは自然数) である。 よってm を自然数とすると [1] n が偶数, すなわち n=2mのときはS2m2=(-1)として求め られる。 k=1 k=1 1 [2]nが奇数、すなわちn=2m-1のときは,Sam = Sim-1+α2m より S2m12m-a2mであるから, [1] の結果を利用して Szm-1 が求められる。 このように, nが偶数の場合と奇数の場合に分けて和を求める。 (1) 2-1+a2x=(-1)2k(2k-1)^+(-1)2k+1(2k)2 =(2k-1)-(2k)=1-4k [1]=2mmは自然数)のとき m m S2m=(a2k-1+a2k)=(1-4k) =m-4. m= =1であるから Sn -m(m+1)=-2m²-m =-2(2)-=-n(n+1) [2]=2-1(mは自然数) のとき 2m+1. azm=(-1)2 '(2m)'=-4m² であるから S2m-1=S2m-a2m=-2m²-m+4m²=2m²-m n+1 m=- であるから 2 S,=2(n+1)_n+1=1/2(n+1){(n+1)-1} = n(n+1) [1],[2] から Sn=(-1)+1 2 -n(n+1) (*) (-1) =1, (-1)=-1 ={(2k-1)+2k} ×{(2k-1)-2k} S2m= (a1+a2) +(as+αs) +...... +(a2m-1+a2m) Sm=-2m²-mに 2=1/27 を代入して,n m= の式に直す。 <S2m=S2m-1+a2m を利用する。 S2m-1=2m²-mをnの 式に直す。 451 (*) [1], [2] のS” の式は 符号が異なるだけだから, (*)のようにまとめるこ とができる。 一般項がαn=(-1)n(n+2) で与えられる数列{an} に対して, 初項から第n項ま での和 S を求めよ。 1 章 ③種々の数列

解決済み 回答数: 1
数学 高校生

波線部のところなんですが5と近似する意味は何ですか?? というか、なぜ5と近似していいのですか? 5.1761より大きいからそれよりも小さい5より大きいのは確定ということですか? その後の4ⁿ-1>10^5 を4ⁿ>10^5とするのは、1が影響がないくらい小さいからですか... 続きを読む

練習初項が2, 公比が4の等比数列を {an} とする。 ただし, 10g102=0.3010, logio3=0.4771とする。 ④18 (1) a が10000を超える最小のnの値を求めよ。 (2)初項から第n項までの和が100000 を超える最小のn の値を求めよ。 (1)初項が2,公比が4の等比数列であるから an=2.4"-11 2.4-110000 22n-1>104 10g1022n-1>10g10 104 an> 10000 とすると 整理して 両辺の常用対数をとると ゆえに (n-1)10g102>4 よって n> /12/11 2 2 log102 108102 +1 + =7.14...... 1 0.3010 2 この不等式を満たす最小の自然数n を求めて ←an=arn-1 ←2.4" '=2(22)7-1 =2.227-2 ←log1010=410g1010=4 ←log102 0 検討 対数の性質 (数学II) > 0, ¥1, M> 0, N > 0, んは実数 のとき 110gaMN n=8 (2) 初項から第n項までの和は 2(4-1)_2(4"-1) = 4-1 =logaM+logaN 2(4"-1) > 100000 M ①として, 両辺の常用対数をとると 2 loga 3 N 2(4-1) =logaM-logaN log10 ->log10 105 3 3 loga M=klog.M ゆえに よって log10 (4"-1)>5-10g102+10g103 ここで 10g102+10g10 (4-1)-10g103>5 5-10g102+10g103=5-0.3010+0.4771=5.1761 >5=510g1010=10g10105 ゆえに 10g10 (4-1)>10g10 105 よって 4"-1>105 ゆえに 4">105 ② すなわち 22n>105 <4">105+1>105 この両辺の常用対数をとると 2n10g10 2>5 5 ゆえに n> 5 2 log102 2.0.3010 =8.3...... よって、②を満たす最小の自然数nは ここで n=9 2(4°-1)=1/2(4'+1)(4'-1)= 2 3 3 2(49-1) 2=1/12 (2.4°+1)(2・4°-1)=1/23・51 3 =174762>100000 3 ・・257・255=43690 <100000 <48-1-(4)-1 ・・513・511 <4-1-(2.4)-1 2(4"-1) 3 は単調に増加するから, ①を満たす最小の自然数nは n=9

解決済み 回答数: 3