学年

教科

質問の種類

数学 高校生

一枚目の問題の解答2の赤線部分と二枚目の解説欄なんですけど、一枚目の問題はKを使ってmを表した後C nにそのまま用いてないのに、二枚目の問題はなぜすぐに用いることができるんですか?

[考え方 例題 B1.6 2つの等差数列に共通な数列 **** 初項4,公差3の等差数列{an} と,初項 200, 公差 5 の等差数列{b} がある. 数列{a} と数列{bm} の共通項を,小さい方から順に並べてでき る数列{cm}の一般項と総和を求めよ。 B1-9 第1章 【解答 1 数列{a} と数列{bm} の正の項を小さい順に並べた数列{d} を書き出すと、数列 {cm} の初項がみつかり、数列{cmの規則性もわかる』 解答 1 解答2 (数列{a} の第l項)=(数列{bm} の第m項)として,自然数 em の関係式を 求め, l m のいずれかを自然数で表す. {a}:4,7,10, 13, 16, 19, 22, 25, 28, 数列{bm} の正の項を小さい順に並べた数列{d} は, {dn}: 5,10,15,20,25,30, よって, 共通項の数列{ch} の初項は10 数列{a} の公差は3, 数列{d} の公差は5であるから, 数列{cm}は3と5の最小公倍数 15 を公差とする等差数 列である. よって, 数列{cm} の一般項は, cn=10+(n-1)×15=15n-5 また, 10≦cm≦200 より, 10≦15η-5≦200 41 したがって, 1≦n- より n=1,2, 3 ..... 13 よって、数列{c} の総和は, 解答 2 =4+(n-1)×3=3n+1 113{2×10+(13-1)×15}=1300 b=200+(n-1)×(-5)=-5n+205 すると, 3ℓ+1=-5m +205 201 an=4+(n-1)・3 =3n+1 b=200+(n-1)・(-5) =-5n+205 b>0 となるnの値は, n≦40 より, 数列{dn} は, d=640=5で,公差は5 {cm} は初項 c1=10 以上, {bm} の初項 200 以下であ る。 S,=1/2n{2a+(n-1)d} 3l-204-5m より 3l-68)=-5m 3と5は互いに素で l m は自然数であるから, m=3k(kは自然数)と表せる. 4≦bm≦200 より したがって, bm=-5×3k+205=205-15k 4205-15k≦200 1 3 -≤k≤- より, k=1, 2, 3, 5 13 67 数列{a} の第ℓ項と数列 {bm} の第項が等しいと する。 mは3の倍数 {cm} は, a1=4 以上, b= 200 以下である. 数列{cm} は, bm=205-15kにん 13, 12, 11, 1 を代入して得られる数列だから, {c}:10, 25, 40, ***, 190 よって, 初項 10, 公差 15, 項数 13の等差数列より, cn=10+(n-1)×15=15n-5 また、数列{cm} の総和は, の総和は1.13(10+190)=1300s.=.. S₁ = ½n (a + b) 2

解決済み 回答数: 1
数学 高校生

数Cの質問です! [ ]で囲まれているところの計算式を 分かりやすく教えてほしいです!! よろしくお願いします🙇🏻‍♀️՞

その 基本 例題 13 なす角からベクトルを求める B, ACOR (1) 正の数とし, ベクトル = (1,1) 2.29 基本事項 2 00000] (1) があるとする。い まことのなす角が60°のときの値を求めよ。 [(1) 立教大] (2)=(1,2)=(m,n)(mとnは正の数)について ||=√10 であり, 33 1章 とのなす角は135°である。 このとき,m, nの値を求めよ。 基本12 3 る。 CHART & SOLUTION なす角からベクトルを求める = (a1, a2), = (b1, bz)とする。 内積をat=a||| cose, at=ab+azb2の2通りで表す 内積を2通りの方法で表し, これらを等しいとおいた方程式を解けばよい。 (1) は (2) ではm, nが正の数であることに注意する。 ■ ) を解く 問 解答 0° 1x 60° 1 1x 求めよ と (1)=1×1+1x(-p)=1-p |a|=√12+1?=√2,16|=√12+(-b)=√1+12 ←成分による表現。 a = |a|||cos60°から 1-p=√2√1+x ① 定義による表現。 201 ①の両辺を2乗して整理すると よって p=2±√3 p2-4p+1=0 (1)=1/12(12) ここで,①より, 1p0 であるから 0<p< 1 ゆえに p=2-√√3 整理する 1+0 であるから, ①の右辺は正。 よって, ①の左辺も正であり, 1-p>0 (2)|5|=√10から ||=10 よって m²+n2=10 ...... ① ||=√12+(-2)²=√5 であるから a•6=|a||6|cos 135°=√/5 ×√10×(-1/2)=-5 COS また, a1=1xm+(-2)xn=m-2n であるから m-2n=-5 定義による表現。」 ベクトルの内積 ←成分による表現。 ゆえに m=2n-5..... ② ②①に代入すると (2n-5)2+n2=10 整理すると 5n2-20n+15=0 よって よって n2-4n+3=0 ゆえに n=1,3 ②からn=1のとき m=-3, n=3 のとき m=1 (n-1)(n-3)=0 m, n は正の数であるから PRACTICE 13° ←m=-3<0 から不適。 m=1, n=3 \)\)= 20 (1) OA = (x, 1), OB=(2,1) について, OA, OB のなす角が45°であるとき, xの 値を求めよ。 (2)=(2-1) = (m,n) について,16=2√5であり,ことのなす角は60°で ある。このとき,m, nの値を求めよ。

解決済み 回答数: 1
数学 高校生

この問題なんですが、(1)は理解できたのですが、(2)からがつまずいてしまいます。2,3枚目にのせた似た問題の解説動画のやり方の方が自分にはあっているなと感じたので、そちらの解き方の方で解説していただければ嬉しいです!宜しくお願いいたします🙇

3 漸化式と数学的帰納法 (81) B1 例題 B1.39 分数型の漸化式 (2) **** 3a,+2 α=8, Q+1= a,+2 によって定義される数列{a} がある. a-B (1) bm とおくと. 数列 {b.) が等比数列になるような.α. a-a (α >β) の値を求めよ。 (2) 数列{a} の一般項 α を求めよ. (1) (b.}が等比数列になるのは, bu+i=rb, (公比r)と表されるときである. そのために、 bath を考えて,これを漸化式を利用して am で表してみる。 (2) (1) で導いた {bm} を利用して一般項を求める。 (考え方)] 3a+2 「解答」 (1) byt= an+1-B am+2 -B 3a+2-3 (a+2) 漸化式を用いるた ata 3a+2 3am+2-α (an+2) a めに bm+1 を考える. an+2 2-28 an+ (3-3)a,+2-28 3-8 3-β (3-a)an+2-2a 3-a 2-2a a₁+ 3-a したがって, 数列 {b.} が等比数列になるための条件は, 2-2a 2-28 -α= 3-α' -β= ~ 部分が同じ形に なれば、第一を 3-α 比として {b,} は等 数列になる. 3-8 である. α. βは,-x(3-x)=2-2xの2つの解であり x2-x-2=0 より x=2. -1 α=2,β=-1 3-β_3+1 =4 であるから 3-a 3-2 a+1_8+1_3 a>βより (2) (1)より また, b1= つまり, a+1 3 ・4"-1 a-2 8-2 2 an-2 2 よって, 特性方程式 (p.B14 参照) _3x+2 x+2 より. x2+2x =3x+2 x= bx+1=4bn 3 b 4"-1 (x-2)(x+1)=0 x=2, -1 と同じ解になる。 2(an+1) =3.4" (a-2) より, 6.4"+8 an= 3.4"-8 6.4"'+2 a= 3.4-2 6.4"+8 3.4"-8 α」=2, an+1= 習 39 ** (1) bm= an+B am+α 4a+1 によって定義される数列{an} がある. 2a+3 とおくと, 数列{bm} が等比数列になるような, α. β (a の値を求めよ. (2) 数列 {a} の一般項 am を求めよ. ➡p.B

解決済み 回答数: 1