学年

教科

質問の種類

数学 高校生

3番が理解できません教えて欲しいです

△ABC において 辺BC AB=c, BC≠2a, CA = b とおくとき (1) cos B を b c で表せ. (2) AM2 を a, b c で表せ. (3) AB2+AC2=2(AM2+BM2) が成りたつことを示せ . 精講 # B a M + a C C-BM (2) 三角形の内部に線が1本ひいてあると, 1つの角を2度使うこ とができます. この問題でいえば, ∠B を △ABC の内角と考え て(1)を求め,次に △ABM の内角と考えて AM2 を求めることが それにあたります。 (3)この等式を中線定理 (パップスの定理) といいます。この等式は,まず使 えるようになることが第1です. 使えるようになったら自力で証明すること を考えることも大切です. また, 証明方法はこれ以外に,三平方の定理を使 う方法()や数学II で学ぶ座標を使った方法,数学Cで学ぶベクトル (TA を使う方法などがあります. 図中の線分AM を中線といいますが,この線分AMを2:1 に内分する 点Gを△ABCの重心といい(52) これから学ぶ数学IIの「図形と方程 「式」,数学Cの「ベクトル」 「複素数平面」 でも再び登場します. 解答 (1) △ABCに余弦定理を適用して 4a²+c2b2_4a2+c2-62 cos B= 2.2a.c 4ac (2) ABM に余弦定理を適用して COSA=Bi 260 AM²=c²+a2-2ca cos B=c²+a24a²+c²-b² b²+c²-2a² 2 = 2 (3)a=BM,b=AC, c=AB だから, 2AM²=AC2+ AB2-2BM2 よって, AB2+AC2=2(AM2+BM²)

回答募集中 回答数: 0
数学 高校生

どうして積の偏角は偏角の和になるのですか?

C2-24 (372) 第5章 複素数平面 例題 C2.13 極形式の積・商 6(cos 80+isin 80) (cos 30-isin 30) **** の値を求め ( 星薬科大) 18 (1)2010 のとき. 例 cos 20+isin 20 た (2) α+β= のとき, cos a-isin a cos β-isin β cos βtisinβ cosa +isina の値を求めよ. 考え 考え方 解答 -0 (広島工業大) (1) cos30-isin30=cos(-30)+isin(-30) とし,積商の極形式を利用する (2)商の極形式が適用できるよう,分子を 十 COS |-isin=cos(-■) +isin(-■ とする. (1) cos30-isin30=cos(-30)+isin (-30) より, (2) 6(cos 80+isin 80) (cos 30-isin 30) cos 20+isin 20 6(cos80+isin80){cos(-30)+isin (-30)} cos 20+isin 20 =6[cos{80+(-30)-20}+isin{80+(-30)-20}] =6(cos30+isin.30)=6lcos(3×1) +isin (3×1)} =6(cos/0/+isinn)=6(1/23+12/21)=3√3+3 cosa-isina_cos(-a)+isin (-α) cos β+isin β cos βtisinβ 極形式のisin ■ の 前は+にする. 複素数の積 → 偏角は和, 複素数の商 偏角は差 0=7 を代入 18 解 平 =cos(-a-β)+isin(-α-β) =cos(a+β)-isin(a+β) ① 同様に, COS cosa +isina 商の極形式 cos(0)=cost sin(-0)=-sin A os β-isin β -=cos (a+β)-isin (a +β)...... ② を利用した. よって、①,②とα+B=1より ・だけ回転し、 cos a-isin a cos B-isin ẞ cosa+isina Focus cos β+isin β =2(cos/isin)=2(12-1)=1-3i (極形式の積の偏角)=(偏角の和) (極形式の商の偏角)=(分子の偏角)(分母の偏角) 注)(2)については分母を実数化して考えてもよい。

回答募集中 回答数: 0