学年

教科

質問の種類

数学 高校生

ス、セなんですが、なぜ答えではこのような言い換えをしているのですか? 私はこの命題を満たすものを選べばいいと思ったので、⓪はすぐに消してしまいました。

〔2〕 正の実数aに関する次の三つの条件 Q, rを考える。 α は無理数である 1 g:a+ は無理数である。 9 a r:2+1/2 は無理数である なお,必要ならば,2,3が無理数であることを用いてもよい。 (1) 命題 「pg」 の反例であるものは D シ である。 命題 「pr」 の反例でないものは ス である。 シ の解答群 ス と の解答の順序は問わない。) a=1 ① a=√2 ?a= √3 ③ a=1+√2 ④ a=2+√2 ⑤ a=2+√3 (2)はgであるための ソ。 〔2〕 条件. Q.の否定をそれぞれ, Q. です。 (1)各選択肢のα.a+1,123の値は、次の表の通りである。 a a' 0 1 √2 (有理数)(無理数) √√3 1+√2 (無理数) 3√2 43 2 (無理数)(無理数) 2012の計算は、 3) とよい。 2+√2 2+√3 (無理数) a+1 2 a (有理数) 4 (有理数) 2 10 3 6 (無理数) 15+62 (有理数) (有理数)(有理数) 命題 「q」の反例は,かつ,すなわち (有理数) 2 (無理数) 14 (有理数) 3 2√2 6+√2 (無理数)(無理数) (無理数) a 「αが無理数 かつ a+ - が有理数」を満たすものである。 これを満たすのは⑤ 命題 「pr」 の反例でないものは、 またはr. すなわち 「αが有理数または+1/3が無理数」を満たすものである。 これを満たすのは^⑩⑩ (または 0, 0) (2) 命題 「rg」は真である。 (証明) 対偶」 が真であることを示す。 正の実数aに対して,a+1/2=x =xが有理数であるとすると、 a'+1=(a+1)-2=x2-2 も有理数である。 (1+√2)+ (1+√ 1+√2 =(2√2)^2=6 よって、 対偶 「!」 が真であるから,もとの命題 「r」も真である。 命題 「qr」は偽である。 (証明終) (2+√√2)+(2+ (2+√2+1 2+√ 19+6√22 15+6√2 (2+√3)+( (2+√3+2+ -42-2=14 √2. v23√2 2 2 は無理数であるが、 ソ の解答群 ⑩ 必要条件であるが, 十分条件ではない ① 十分条件であるが, 必要条件ではない (2) 必要十分条件である 必要条件でも十分条件でもない (数学Ⅰ 数学A第1問は10ページに続く。) L D (√2)+(v/zy=2+1/2=1/27は有理数であるから,a=√2 は反例である。 ゆえに は q であるための十分条件であるが, 必要条件ではない。(①) (参考)表中の1+√2 2+√2, 2+√3 などが無理数であることは,√2 √3 が無理数であることを用いて証明することができる。 例えば、 1+√2 が無理数であることは、次のように証明できる。 (証明) 1+√2 が有理数であると仮定すると, 有理数xを用いて 1+√2=x と表される。 このとき √2=x-1 右辺のx-1は有理数であるが, 左辺の2は無理数であるから, 矛盾 する。 したがって, 1+√2 は無理数である。 (証明終)

解決済み 回答数: 1
数学 高校生

基本例題114についてです!! (1)では、場合分けしないのに(2)では、場合分け(m=0、m≠0)するのがわかりません😭解説お願いします!

解答 基本例題 114 2次方程式の実数解の個数 (2) 1 00 (1) 2次方程式 2x2-kx+k+1=0が実数解をもたないような、定数kの値の範 囲を求めよ。 (2)xの方程式mx2+(m-3)x+1=0 の実数解の個数を求めよ。 指針 か.169 で学んだように、2次方程式 ax+bx+c=0 の実数解の有無や個数は、 基本100 判別式 D=62-4ac の符号で決まる。 実数解の個数 異なる2つの実数解をもつ ⇔D> 2個 ただ1つの実数解 (解) をもつD=0 実数解をもたない <<D<0 1個 193 20個 (2)x2の係数に注意。m=0とm≠0の場合に分けて考える。 (1)この2次方程式の判別式をDとすると ( D=(-k)-4-2(k+1)=k-8k-8 2次方程式が実数解をもたないための必要十分条件は よって D<0 k2-8k-8<0 k2-8k-8=0を解くと したがって 4-2√6 <k<4+2√6 (2) mx2+(m-3)x+1=0 k=4±2√6 ① とする。 これを解くと x= 1 よって、実数解は1個。 3 [1]m=0のとき,①は -3x+1=0 ( <k= [2] m≠0のとき, ① は2次方程式で, 判別式をDと D=(m-3)2-4・m・1=m²-10m+9 すると =(m-1)(m-9) これを解いて D>となるのは, (m-1)(m-9)>0のときである。 m<1, 9<m であるから このとき,実数解 (1)) − (−4)±√(−4)² −1·(−8) 問題文に 2次方程式と 書かれていないから 2 次の係数が0となる m=0 の場合を見落とさ ないように。 =0 の場合は1次方程 式となるから、判別式は 使えない。 この点に注意 必要 <00<m<1,9<m(単にm<1,9<m だけ では誤り! m≠0で あることを忘れずに。 D = 0 となるのは, (m-1) (m-9)=0のときである。 これを解いてm=19 このとき, 実数解は1個 D<0となるのは, (m-1)(m-9) <0のときである。 これを解いて 1<<9 このとき, 実数解は0個。 以上により <0,0<<1,9<m のとき 2個[1], [2] の結果をまと 1<<9の範囲に m=0は含まれていな m=0, 1, 9のとき 1個 > 1 <m<9 のとき 0 個 × (1+) (+) 1->ve- Jeb

解決済み 回答数: 1
数学 高校生

K3-1 シスセについてなのですが、太郎さんが二次方程式が異なる2つの正の実数解を持つことと言い換えられるからと書いてある部分から、クケコサ(3枚目の写真の蛍光ペンを引いた部分)を判別式したのですが、Tは0より大きいから-2√3がいけないのは理解できるのですが、4はどうやっ... 続きを読む

A t 2600 C x 16+4/ =-2x+16- it 数学Ⅰ 数学A K 600 13:16+60 BC-4BC+3=0 (BC-1)(BC-3)=0 [2] 以下の問題を解答するにあたっては,必要に応じて8ページの三角比の表を用 いてもよい。 1,3 (1)△ABCにおいて, AB=4, AC = 13, ∠ABC=60°とする。 このとき, BC = カ または BC= キ である。 ただし, カキとする。 (2) 太郎さんと花子さんは, (1) のように △ABCの2辺AB, ACの長さと ∠ABCの大きさを決めたとき, それらを満たす △ABC が二つ存在するための 条件について調べている。 (i)t を正の実数とし, △ABCにおいて D30をすると. 12-1570 t=vis (ピン15 t=√15 数学Ⅰ 数学A BC=x とし, △ABCに余弦定理を用いると, xの2次方程式 x 16×2X x²- ク2x+ ケコ +サ =0 ② D=(-2)^2-41116-1)=4-64+4+2 64 が得られる。 ② が異なる二つの正の解をもつ条件を考えることにより, ①を満たす 16g △ABC が二つ存在するようなtの値の範囲は D=4-4×1×116-12) 42 64 シ セ << • 4+412-64-0 15 4160 412-60=0 y 25 であることがわかる。 2t2-30:0 (i) 0°0 <180° とし, △ABCにおいて +2-15-0 #215 AB=4, AC = t, ∠ABC=60° とする。 4 AB=4, AC=√13, ∠ABC=8 ① C ③ B とする。 太郎 : ① を満たす △ABC が二つ存在するためのtの条件はどうなるの かな。 x²-40x+3=0 二つ存在するための必要十分条件として ソ が得られる。 13:16+-4Cx として (i) と同じように考えることにより, ③を満たす △ABCが 太郎: △ABC が二つ存在することは, その2次方程式が異なる二つの 正の解をもつことと言い換えられるから...。 花子: 辺BC の長さをxとおいて △ABCに余弦定理を用いると,定数 tを含むxの2次方程式が得られるね。 その2次方程式の実数解 に着目するのはどうかな。 X の解答群 ⑩ cost > 30 16 ① cos> √3 ② √13 も 4 COS > 8 APPLA B THE (-2)-4(16-(+) 54× 11-64-44220 18+2==0 (数学Ⅰ 数学A第1問は次ページに続く。) HILS したがって, 三角比の表より, 0°8≦ タチ のとき③を満たす 60 (2-1)2-1416-12 =(-1)2+15-12 △ABCは二つ存在し, +1)=6 タチ +1 0 180°のとき③ を満たす △ABC はただ一つだけ存在するか,または存在しない。 ただし,√31.73, 133.61 とする。 0 0 (数学Ⅰ 数学A 第1問は次ページに続く

解決済み 回答数: 1
数学 高校生

KP-1 ケコサの解き方を教えて欲しいです🙇‍♀️解説を見たのですが、そのまんまという感じでどういう解き方をすれば良いのかがわかりません。はんれいあだから成り立たないのを選べば良いところまでは分かるのですがどれが成り立たないのかがわかりません。 どなたかすみませんがよろしく... 続きを読む

数子1, 数学A [2] a, b を実数として,f(x)=(x-a)' + b とする。2次方程式 f(x)=0 か 0<x<2の範囲に少なくとも一つの解をもつ条件を考えよう。 数学Ⅰ 数学A 太郎さんと花子さんは話し合って, 実数 α, bに関する次の三つの条件か (1) まず, 条件 「f(x)=0 の二つの解がともに 0<x<2の範囲にある」 ① について考えよう。 太郎さんと花子さんが、 ①が成り立つための必要十分条件について話して いる。 太郎: 関数 y=f(x) のグラフが図1のようになるときを考えればいい ね。 花子:重解も二つの解と考えるから, 図2のような場合も条件を満たす ね。 y=f(x) y y=f(x) Q, r を考えた。 p : 0<a<2 q: b≤0 r: f(0)>0 かつ (2) > 0 これらの条件を二つずつ組み合わせて, そのときに ①が成り立つかどうか を調べよう。 ・命題 「(かつq) ならば ① が成り立つ」の反例として適当な y=f(x) の グラフは ケである。 ・命題 「(かかつ)ならば① が成り立つ」の反例として適当な y=f(x) の グラフは コロである。 ・命題 「(q かつ)ならば① が成り立つ」 の反例として適当なy=f(x) の グラフは サロである。 図 1 ○ 図 2 (数学Ⅰ 数学A 第1問は次ページに続く。) ケ ~ サ については,最も適当なものを、次の①~③のうちから 一つずつ選べ。 ただし, 同じものを繰り返し選んでもよい。 y y ① y VA V V 2 2 2 2 「(pかつg かつ)が成り立つ」ことは①が成り立つための必要十分条 ある。 (数学Ⅰ 数学A 第1問は次ページに書

解決済み 回答数: 2
数学 高校生

5 (1)についてです。 2枚目の写真なのですが、必要十分条件は十要だと覚えてるのですが、矢印の上の左から右に行くところが十分なのか、左がのことを十分というのかどちらなのか教えていただきたいです🙇‍♀️ また、この問題の場合は条件aの十分条件だから左側で合ってますか? ど... 続きを読む

S 〔2〕 四角形ABCD に関する条件α ~g を次のように定める。 a: 平行四辺形である。 ✓ 6: AB=CD かつ BC = DA vc: AD//BC d: AD // BC かつ ∠A= ∠C e: 二つの対角線がそれぞれの中点で交わる。 f: 二つの対角線の長さが等しい。 g: 二つの対角線が直交する。 小 (1)条件6~gのうち、条件αの十分条件であるものをすべて挙げた組合せとして正しいものは ウ5 である。 ウ |の解答群 b, c ① b, d 2d, e b, c, fb, d, e 5 d, e, f (2)条件6~g のうち、条件αの必要条件であるものをすべて挙げた組合せとして正しいものは エロである。 エ の解答群 O b, c, f 3 b, c, d, e ①b, de 4. b, d, e, g 2d, e, f ⑤ d,e,f,g (3) 「α かつオ」は四角形ABCDが長方形であるための必要十分条件である。 オ の解答群 O b C e ④ f g (4)条件〜gのすべてを満たす四角形ABCD は カ の解答群 ⑩ 存在しない 4 正方形である 正方形でないひし形である ③平行四辺形でない台形である (配点 10) (公式・解法集 7 8 9

解決済み 回答数: 1