学年

教科

質問の種類

数学 高校生

ウ~よく分かりません。教えてください🙏

数学 A 図形の性質 51★★ 黒板に右図のような三角形がかいてあり AD:DB=3:2 CE:ED=t:1-t (0<t<1) とする。 <目標解答時間18分〉 A D E とする。 太郎:t=- として辺の比を考えてみよう。 花子 このとき, CF AF はどうなるかな。 太郎 2 直線 AE, BC の交点をG とすると, BG: CG はどうだろう。 B GA C (1) 花子さんと太郎さんはtの値と点E,F,Gの位 置などに関して話している。 メネラウスの定理を用いると CF カ = AF キ である。 また、チェバの定理を クケ BG (i) DF // BC の場合を考える。 用いると, CG コ である。 したがって, 直線ABと直線 FGはサ 花子: 線分 DF と辺BCが平行になるときのtの値を求めてみよう。 サ 太郎: 平行線の性質を利用することができるね。 花子 このとき, ABCE と △ABCの面積比はどうなるのかな。 | の解答群 平行である ①辺ABのAの側の延長上で交わる ② 辺ABのBの側の延長上で交わる AD 3 であることに着目すると, 線分 DF と辺BC が平行になるのは AB (2)BC=ABとして,点EがABCの内心になる場合を考えてみよう。 ア t= のときである。 このとき, BCE の面積は, △ABCの面積の イ シ (i) このとき,t= であり, AC BC == である。 ウ ス ソ 倍である。 さらに, △BCE と AEF の面積の大小を比べると オ I オ の解答群 △BCEの面積と△AEFの面積は等しい ① △BCE の面積の方が AEF の面積より大きい ② △BCE の面積の方が AEF の面積より小さい -96- (次ページに続く。) シ (ii) t= ス のとき,三つの角∠AEB, ∠BEC, ∠CEA のうち、最も大きい 角はタ である。 タ の解答群 ∠AEB ① ∠BEC ZCEA -97-

解決済み 回答数: 1
数学 高校生

この問題なんですが Pを x、Y、0遠いて計算して 出すというのでは答えが違うのはなぜなんですか? 字が汚くてすみません。

-118 Think (686) 第11章 空間のベクトル 例題 C1.60 空間における交点の座標(2) **** 2点A(5, 0, 9), B(1, 4, 3) と xy 平面上を動く点Pに対して, AP+PB の最小値と,そのときの点Pの座標を求めよ. 同じ側 ABS ・平面 考え方 2点A, B が xy 平面に関して反対側 にある場合, AP + PB が最小となる のは, 3点AP Bが一直線上にあ る場合である。 同じ側にある場合は, xy 平面に関してBと対称な点B' をと ればよい 反対側 AS P xy 平面 ・B B' 直線の方程式をベクトル方程式で考えて, 媒介変数表示する。 Abs 2点A, B を通る直線のベクトル方程式は OP=OA+tAB である=10 解答 2点A, B は xy 平面に関して同じ側にある. xy 平面に関して点Bと対称な点をNHAT もに正なので, B'(1, 4, -3) とおくと, PB=PB' より, AP + PBが最小となるのは, 3点A,P, B' が一直線上にあるときである. AB' = (-4,4,-12) より, OP=OA + tAB' =(5,0,9)+t(-4,4,12)x =(5-4t, 4t, 9-12t) A,Bの座標がと xy 平面に関して同じ側 にあるとわかる. 直線 AB'′ と xy 平面 15 P B' y の交点が求める点P である. 9 したがって、点Pの座標は, (5-4t, 4t, 9-12t) ・① 013+8 点Pはxy平面上の点より 座標は0だから, 9-12t=0 t=- 3 このとき,P(230) 2-)-A2AO HO (S) 50-RO-1 よって,P(2,30) のとき,AP+PBは最小となり AP+PB=AB、 =√√(-4)'+4°+(-12) =4/11 (3 tを①に代入する. Focus 直線のベクトル方程式 OP = OA+tAB =OA+t(OB-OA) =(1-t)OA+tOB 10-010

解決済み 回答数: 1