学年

教科

質問の種類

数学 高校生

演習β 35回 4(2) マーカー部分がなぜこうなるのか分からないです💦

出た目に き、出た目 5,6のい ときであ ことど A1 両端のマスが同じ色になる塗り方を A, 両端のマスが異なる色になる塗り方をBとす とする。 -ある。 A1 に 4 [2009 横浜国立大] 赤,青, 黄の3色を用いて, 横1列に並んだn個のマスを, 隣り合うマスは異なる色に なるように塗り分ける。 ただし, 使わない色があってもよい。 両端のマスが同じ色にな る場合の数を am とし, 両端のマスが異なる色になる場合の数をb, とする。 (1) as, bs, as b』 を求めよ。 (2) a1b (n≧3) をnの式で表せ。 出て ●目)の る! (1) n=3のとき 左端のマスを赤で塗るとき, 樹形図からAの塗り方は2通り, Bの塗り方は2通り ある。よって ag=3×2=6, bs=3×2=6 n=4のとき な端が、赤、青、黄の場合の3パターン 左端のマスを赤で塗るとき, 樹形図からAの塗り方は2通り, Bの塗り方は6通り ある。よって a4=3×2=6, b=3×6=18 樹形図は混色の どれかけでいい。 ・赤 黄 青 (1) から よって, ③, ④ から Bの塗り方になるのは, 次の [1], [2] のいずれかである。 [1] 左からn個のマスの両端を同じ色とし、残りの1マスにそれと異なる2色のどち らかを塗る。 ●全分け [2] 左からn個のマスの両端を異なる色とし,残りの1マスに両端以外の1色を塗る。 ①よりAnti こ antz よって bn+1=2ax+bm 問題文にある ①②から an+2=2an+an+1 (n≧3) 変形して an+2+an+1=2(an+1+ax) an+2-2an+1=-(an+1−2az) a+a3=12,4-2a3=-6 黄 (2) n+1個のマスがあるとする。 Aの塗り方になるには,左からn個のマスの両端を異なる色とし、残りの1マスに左 端と同じ色を塗ればよい。 ゆえに an+1 = bn 黄 青黄赤青青黄赤黄 赤 辺々を引くと 30=3.2"-1+6・(-1)"-1 また, ① から bn=an+1=2"+2・(-1)" banzanti これを②に代入 an+1+a=2"-3 (ax+as) = 3.2"-1 an+1-2a=(-1)"-8a-2as)=−6 (-1)"-1 ゆえに an=2"-1+2.(-1)"-1

回答募集中 回答数: 0
数学 高校生

演習β第36回 1(3) (3)が全く分からないので詳しく教えてください🙇‍♀️

1 [2000 香川大] 3次関数f(x)=x-3ax+α²-4について,次の問いに答えよ。 (1) この関数の極値を調べよ. (2) 方程式f(x)=0が異なる3つの実数解をもつようなαの値の範囲を求めよ. (3) (2) のとき, 3つの解は2と2aの間にあることを示せ . 解答の値によって場合分け!! (1) f'(x)=3x-34²=3(x+a)(x-a) [1] a>0のとき x=-αで極大値f(-α)=203+α-a, x=αで極小値f(α)=-2a+α-a をとる。 [2] α=0のとき極値なし. [3] a <0のとき で極大値f(a) =-2a3+a²-a, x=-αで極小値f(-a)=2a+α-a をとる. (2) 関数f(x) が正の極大値と負の極小値をもつとき, y=f(x)のグラフはx軸と3点 で交わるから、方程式f(x) = 0 は異なる3つの実数解をもつ。 (1) から, 求める条件は A a≠0かつf(-a)f(a)<0 ここで (1)と〔3]を合わせた f(-a) f(a)=(2a³ + a²-a)(-2a³+ a²-a) =a²(2a-1)(a+1)(-2a²+a-1) [2] 0²0n²z fux)= 3x² fux tot +4x) = 0 1²2²3011 X=0 the 209 a0から a² > 0 2 7 また - 2a² + a−1 = -2(a− 1)² -- 8 よって, f(-a)f(α) <0から (2a-1)(a+1)>0 これを解いて a<-1, 1/23 <a (a≠0を満たす) (3) f(-2a)=-2a³ + a²-a=f(a), ƒ(2a)=2a³+ a²-a=f(-a) (2) より, f(-a) f(a)<0であるから f(-2a)f(−a)=f(a)f(-a) <0, Hoyv <0 f(a)f(2a)=f(a)f(-a) <0 ゆえに, f(x) = 0 は24とa,-aとa, a と24の間にそれぞれ解をもつ. よって、3つの解は2と2の間にある. 2 [2 かを定 なる担 (1) 2 (2) 2 (3) 2 (4) (1) t (2

回答募集中 回答数: 0
数学 高校生

225. [2]で、f(x)は常に単調増加する、というのは 「x≧においてf(x)は常に単調増加する」ということですよね? y=x^3は極値は持たないけど単調増加でも単調減少でもないですよね??

t)(x-t) その 鹿児島大 演習 223 道 219 参照。 すると き, t = 0, [u [の] ~極大,他方で引 のとき ると 3 演習 例題225 不等式が常に成り立つ条件(微分利用) 0000 aは定数とする。 x≧0 において,常に不等式 x-3ax²+4a>0が成り立つよう にaの値の範囲を定めよ。 のとき 指針f(x)=x-3ax2+4aとして, 検討参照。 [1] 2a < 0 すなわちα<0のとき (神号同側) [x≧0 における f(x) の最小値] > 0 となる条件を求める。 導関数を求め,f'(x)=0 とすると x=0, 2a 02a の大小関係によって, f(x) の増減は異なる から 場合分けをして考える。 解答 f(x)=x-3ax2+4a とすると f'(x)=3x²-6ax=3x(x-2a) ......... f(x)=0 とすると x=0, 2a 求める条件は,次のことを満たすαの値の範囲である。 「x≧0 におけるf(x) の最小値が正である」 ・・・ (1) ①を満たすための条件は x≧0 におけるf(x) の増減表は右のよう になる。 ① を満たすための条件は したがって a>0 これはα<0に適さない。 [2] 2a=0 すなわち α = 0 のとき f'(x)=3x2≧0, f(x)は常に単調に増加する。 f(0) = 4a>0 4a>0 よって a>0 [ [3] 20 すなわちa>0のとき x≧0 におけるf(x) の増減 表は右のようになる。 ①を満たすための条件は -4a³+4a>0 これはα=0 に適さない。 20 f'(x) f(x) 4a -4a(a+1)(a-1)>0 a(a+1)(a-1) <0 a<-1,0<a<1 ゆえに よって これを解くと 0<a<1 a> 0 を満たすものは [1]~[3] から,求めるαの値の範囲は 2a<0 x 0 f'(x) + f(x) 4a > 2a 0 -4a³+4a 0<a< 1 1 /1 NJ 2a0x + 2a=0 242x-x 16 がx≧0 に対して常に成り立つ - -1 [注意] 左の解答では, [1] 2a<0, [2] 2a=0, [3] 2a>0 の3つの場合に 分けているが, [1] と[2] を まとめ, 2a≦0, 2a>0 の場 合に分けてもよい。 なぜなら, 2a≦0のとき, x≧0では f'(x)≧0 であるから, x≧0でf(x) は 単調に増加する。 ゆえに,x≧0 での最小値は f(0) =4a である。 実際に左 の解答 [1] と [2] を見てみ ると,同じことを考えている のがわかる。 + a (a+1)(a-1)の符号 0 基本220 < a>0のとき a(a+1)>0 0<2a 02ax ゆえに a-1 <0 としてもよい。 1 a 343 638 関連発展問題 6章

回答募集中 回答数: 0
数学 高校生

224. 赤で書かれているu≠0について質問です。 これはg'(t)=6t(t-u)であり、 g'(t)=0のときt=0,u 極小値と極大値両方を持つ必要があるので u≠0ということですか?? また、「かつ」という書き方ではなくこうでもいいですか? (写真) 最後に、 ... 続きを読む

342 BE ひ)を通る 線Cの接線が3本存在するための u, vの満たすべき条件を求めよ。また、そ 条件を満たす点(u, v) の存在範囲を図示せよ。 演習 例題2243本の接線が引けるための条件 (2) |f(x)=x-x とし, 関数y=f(x) のグラフを曲線Cとする。点(u, 指針 前ページの演習例題223と考え方は同様である。 ① 曲線C上の点 (t, f(t)) における接線の方程式を求める。 (②21で求めた接線が, 点 (u, v) を通ることから,t の3次方程式を導く。 [③3] [②2] の3次方程式が異なる3個の実数解をもつ条件を,u, の式で表す。.... g(0)g(u) < 0 から (u+v)(-u³+u+v) <0 ②2 ②でu=0 とすると<0 となり,これを満たす実数は存在 しない。ゆえに,条件u≠0は②に含まれるから, 求める条件 は ② である。 u+v>0 ②から よって ....... -u³+u+v<0 u+v<0 \u³+u+v>0 ゆえに,点(u, v) を通るCの接線が3本存在するための条件s-# は,t の3次方程式 ① が異なる3個の実数解をもつことである。 よって,g(t)=2t3-3ut'+u+cとすると, g(t) は極値をもち, 極大値と極小値が異符号となる。 g'(t)=6t2-6ut=6t(t-u) であるから u=0 かつg(0)g(x)<0 v>-u \v<u³_u または <-u または \v>u³_u0 したがって,点(u, v) の存在範囲は 右の図の斜線部分。境界線を含まない。 解答 f'(x)=3x2-1であるから, 曲線C上の点の座標を(t, f(t)) とすると,接線の方程式は y-(t³-t)=(3t²-1)(x−t) DROLON y=(3t²-1)x-2t3 すなわち この接線が点 (u, v) を通るとすると+v=(3t2-1) u-2t3 よって 2t3-3ut2+u+v=0 ① 3次関数のグラフでは, 接点が異なれば接線も異なる前ページの検討参照 [1] 2c x≥0 にな ①を した これ [2] 2 f'(x V √√30 3 2√3 9 基本 219,演習20 DACO 2√3 √3 3 _y_f(t)=f'(t) (x-t) p.337 の例題 219 参照。 CLONEENHOU g' (t)=0 とすると t=0, u u=0のとき、 t=0,uの うち一方で極大、他方で 小となる。 v=uuのとき v=3u²-1 v=0 とすると √3 3 = u=± √3 のとき 3 u=± 2√3 9 (複号同順) 直線では線 CO 原点Oにおける接線。 ⑤ 224 曲線 Cの接線が3本存在するためのu, v 練習 f(x)=-x 3 +3x とし, 関数 y=f(x)のグラフを曲線Cとする。 点 (u, の条件を満たす点(u, v) の存在範囲を図 演習 ひの満たすべき条件を求めよ。 αは定 にαの また 指針▷f い)を運 解答 f(x)=x と 1 0 7 f'(x)= 求める ① [3] ①を よっ ゆよこい XM 表 これ [1]~ 練習

回答募集中 回答数: 0
数学 高校生

223.) この問題で記述している 「三次関数のグラフでは接点が異なると接線が異なる」 というのは一つの接線で2つの接点を持つ方程式も存在するが、3時間数は全てそうではない、ということですか??

43の考え方で s, f(s))で接する で接するとして 致する。 =(x-8)(x-1) 下の別 は え方によるものである。 ▼st を確認する。 方程式は x-31¹+81³. めの条件は、 方程 である。 をもてばよい。 -21-2) て、 sキナである。 0000 演習 例題223 3本の接線が引けるための条件 (1) |曲線C:y=x+3x2+xと点A(1, α) がある。 Aを通ってCに3本の接線が引 けるとき,定数aの値の範囲を求めよ。 1 本〔類 北海道教育大] 基本 218 -1)-8=-8 から パー 芹求めよ。 「指針3次関数のグラフでは、接点が異なると接線が異なる(下の検討 参照) から, 曲線CA (1,α) を通る3本の接線が引ける ・曲線C上の点 (t + 31+t) における接線が A を通るようなtの値が3つある そこで, 曲線C上の点(t, における接線の方程式を求め,これが点 (1, a) を +362+t) 通ることから, f(t) =αの形の等式を導く。 。 ********* CHART 3次曲線 接点 [接線] 別なら 接線[接点] も別 解答 y=3x2+6x+1であるから, 曲線C上の点(t, ピ+3t2+t) に おける接線の方程式はy-(t+3t+t)=(3t2+6t+1)(x-t) y=(3t2+6t+1)x-2t-3t2 すなわち この接線が点 (1,α)を通るとすると -2°+6t+1=α ① 定数 αを分離。 f(t)=-2t+6t+1 とすると Fit Maasto f'(t)=-6t2+6=-6(t+1)(t-1) f'(t)=0 とすると f(t) の増減表は次のようになる。 t=±1 ( t f'(t) f(t) -1 1 0 + 0 極小 極大 7 -3 5 ... - 5 1 -1/0; 1 y=a t |y=f(t) 3次関数のグラフでは、 接点が異なると接線が異なるから, の3次方程式 ①が異なる3個の実数解をもつとき, 点Aか ら曲線Cに3本の接線が引ける。 したがって、曲線 y=f(t) と直線y=α が異なる3点で交わる 条件を求めて -3<a<5 <f(-1)=2-6+1=-3, f(1)=-2+6+1=5 < ① の実数解は曲線 y=f(t) と直線y=α との 共有点の座標。 検討 3次関数のグラフにおける, 接点と接線の関係 3次関数y=g(x)のグラフに直線y=mx+nがx=α,β (αキβ)で接すると仮定すると g(x)−(mx+n)=k(x-a)²(x−ß)² (k=0) ←接点⇔重解 の形の等式が成り立つはずである。ところが、この左辺は3次式,右辺は4次式であり矛盾して いる。よって,3次関数のグラフでは, 接点が異なると接線も異なる。 これに対して, 例えば4次関数のグラフでは, 異なる2点で接する直線がありうる ( 前ページの 演習例題222 参照)。 したがって,上の解答の の断り書きは重要である。 練習点A(0, α) から曲線 C:y=x-9x2+15x-7に3本の接線が引けるとき,定数 73sceto() 223 aの値の範囲を求めよ。 341 6章 3 関連発展問題 38

回答募集中 回答数: 0