学年

教科

質問の種類

数学 高校生

⭐️数学が好きな方・得意な方へ こちらの確率の問題を解いていただきたいです。答えはないです😔数Bの内容です。お願いします🙇

さいころを同時に3個投げ、 出た目の組み合わせで勝ち負けが決まるゲームがある。 以下の目の組み合 わせのときに、 さいころを投げた者の勝ちとする。 4、5、6の組み合わせ (すべて1個ずつ) または ゾロ目 (111、222、333、444555 666) このとき、 以下の問いに答えよ。 (1) 普通のさいころを3個使ってゲームを1回する場合、 勝ちとなる確率を求めよ。 (2)4~6の目が2つずつある特殊なさいころを3個使ってゲームを1回する場合、 勝ちとなる確率を 求めよ。 (3) Aさんは普通のさいころ3個と、(2)の特殊なさいころ3個のどちらを使うかを毎回選び、 連続して 100回のゲームをして、 できるだけ多くの勝ちを得たいとする。 ただし、 A さんが (2) の特殊なさい ころを使ったと B さんに判断されないようにしたい。 特殊なさいころを使う頻度とタイミングにつ いて、 仮説検定を用いて考えよ。 ただし、 有意水準は5% とし、Aさんがどちらのさいころを使っ たか Bさんは毎回わからないものとする (B さんは仮説検定を用いて、 A さんのさいころの使用に ついて検討する)。 答えを導くまでの過程は式も含めて丁寧に書くこと。

回答募集中 回答数: 0
数学 高校生

黄色でマーカーを引いた所の意味が分からないので教えてください🙇🏻‍♀️⋱

基本 89 例題 52 関数の極限 (4) ・・・ はさみうちの原理 00000 [3x] x 次の極限値を求めよ。 ただし, [x] は x を超えない最大の整数を表す。 (1) lim (2) lim (3*+5*) 1 x18 0.82 項目 基本 21 指針 極限が直接求めにくい場合は、 はさみうちの原理 (p.82 ①の2) の利用を考える。 (1) n≦x<n+1 ( は整数) のとき [x] = n すなわち [x]≦x<[x]+1 よって [3x]≦3x<[3x]+1 この式を利用してf(x) [3x]≦g(x) x (ただしlimf(x) = limg(x)) となるf(x), g(x) を作り出す。 なお、記号 [ ]はガ ウス記号である。 x→∞ (2)底が最大の項5" でくくり出すと(+5 (1/2)^1^(1/2)+1}* 1 = = (1/3) の極限と {(12/3) +1} の極限を同時に考えていくのは複雑である。そこで. はさみうちの原理を利用する。x→∞ であるから, x1 すなわち 01/12 <1と考 えてよい。 CHART 求めにくい極限 不等式利用ではさみうち (1) 不等式 [3x]≦3x<[3x]+1が成り立つ。 x 解答 x>0 のとき,各辺をxで割ると [3x] [3x] 1 ≤3< + x x x [3x] 1 1 ここで,3< + から [3x] 3- x x x x よって 3-1[3x] ≤3 x x lim (3-1) =3であるから [3x] lim =3 x→∞ x はさみうちの原理 f(x)Sh(x)g(x) T limf(x) = limg(x)=α X-1 ならば limh(x)=α 888 2章 関数の極限 x-x (2) (3*+5*)*=[5*{( 3 )*+1}}*=5{(3)*+1}* x→∞であるから,x>10<<1と考えてよい。 x 底が最大の項5でく くり出す。 このとき{(1)+1}°<{(号)+1F <{(12) +1(*) 4>1のとき,a<b すなわち 1<{(1)+1}*<(1) +1 ならば A°<A lim x→∞ {(1/2)+1} =1であるから 1であるから (2) +1-1 lim +1>1であるか ら, (*) が成り立つ。 x→∞ よって lim("+5) -lim5{(2x)+1} =5・1=5 x→∞ 練習 次の極限値を求めよ。 ただし,[]はガウス記号を表す。 052 x+[2x] (1) lim x→∞ x+1 (/)+(2)72 (2) lim{(3)*+(3)*}* p.95 EX 37、

回答募集中 回答数: 0