学年

教科

質問の種類

数学 高校生

141. これでも記述大丈夫ですか??

重要 例題 141 n≦k の仮定 数列{an}(ただし an> 0) について、関係式 証明。 は整数 の証明。 (a1+a2+......+αn)=a^²+a2²3+...... +α² が成り立つとき, an=nであることを証明せよ。 指針自然数nの問題であるから,数学的帰納法で証明する。 n=k+1のときを書き出すと ならない。 (1+2+..+k+αk+1)=13+2°+..+k+ak+13 A ・成 となるが, 「n=kのとき成り立つ」 と仮定した場合, ak-1=k-1, ak-2=k-2, り立つことを仮定していないこととなり, A が作れなくなってしまう。 したがって, n≦k の仮定が必要。 そこで,次の [1], [2] を示す数学的帰納法を利用。 [1] n=1のとき成り立つ。 [2] n≦k のとき成り立つと仮定すると, n=k+1のときも成り立つ。 ......... CHART 数学的帰納法 n≦kで成立を仮定する場合あり 解答 [1] n=1のとき, ar²=a3, a>0から ゆえに,n=1のとき α = nは成り立つ。 [2] n≦k のとき, an=n が成り立つと仮定する。 a=1 n=k+1のときを考えると {(1+2+.….....+k)+ak+1}² = 1³ +2³++k³ +ak+₁³ (①の左辺)=(1+2+: ...... +k)+2(1+2+..+k)an+1+αk+12 = { ½ k (k+1) } ³+2+ = =+k(k+1) an+i+anti² =1+2+..+k+k(k+1)ak+1 +ak+1 (k+1)an+1+ak+12=ak+13 2 ①の右辺と比較して ゆえに k10 であるから よって, n=k+1のときにも an = nは成り立つ。 [1], [2] から, すべての自然数nに対して an=nは成り立つ。 ak+1 (an+1+k){ak+1-(k+1)}=0 an+1=k+1 n=1のときの証明。 <n≦k の仮定。 <n=k+1のときの証明。 3: 1 数学的帰納法

回答募集中 回答数: 0
数学 高校生

3/4-x² がどこを表しているのか分かりません💦

340 基本例題 217 放物線y=x2と円x2+ 両端とする円の2つの弧のうち, 短い弧と放物線で囲まれる図形の面積Sを 求めよ。 CHART & SOLUTION 面積を直接求めるのは難しいため、 図のよ うに、直線と放物線で囲まれた部分の面積 を補助的に考え、三角形や扇形の面積を足 し引きする。 放物線と円の面積 ¹+(y – 5)²=1 ****** 三角形の面積と扇形の面積は公式を,直線 と放物線で囲まれた部分の面積は積分を 用いる。 3 9 16 = -=0 + 1 が異なる2点で接する。 2つの接点を 23 よって (y - 3)² = 0 y=2のとき x=± 2 よって, 放物線と円の共有点の座標は (43.2) (-43, 3) √3 2 4 3√/3-2/3 T 4 2 ∠QRP= 37 であるから また,図のように P, Q, R をとる。 求める面積Sは,図の赤く塗った部 分の面積である。 岡本 ゆえに Q 解答 放物線と円の方程式からxを消去するとy+(y_2 ) 2-1 =1 1 整理すると y²-- R ------ O S y= (3 4 P Q 3/4 √3 2 O PQと放物線 が囲む部分 R 5 4 R 2 . S s = √²/12 ( 8 - x²) x + 1/2 · √ 3 · 1/2 - 1/2 ·1. z π 2 - - (- 1²) (1/³² - (- ~√ ²³ ) ² + 4√³ - 13 √√3 = 2 2 P O 12k y=x2 TH まずは、放物線と円の 有点の座標を求める。 (S(を消去し,yの2次 1--32 R √3 O ARPQ 1 4 形RPQ 式を考える。(p.155 重要 例題 95 参照 ) 23 CHART 絶対値 まず, 絶対 場合の分か (1) x-2 y=xにy=2 x=270 から R 本 例題 218 S₁1x-21 √3 2 (8-(1+))) 21/1/2 高さは RPQの底辺は3 (2) x². foff 円年 (1) & 半径中心角の扇形 の面積は 1/2120 ・和 U

回答募集中 回答数: 0
数学 高校生

(ii)において全問で3次関数の接線L1を導出して、それとは別の等しい傾きの接線L2を考え、L1と囲まれた面積をS1、L2とはS2とするとS1=S2となるのですが傾きが等しい接線だからでしょうか。 解答では傾きを平方完成してt=1で対称であるためとされていますが解いていて思... 続きを読む

そして,l と傾きが等しい C”の接線が存在するのはX tキー+2 すなわち t≠1 のときである。 &」 と傾きが等しい ” の接線のうち, & でない方の接線をl2とし&と C” とで囲まれた図形の面積を S1,l2 と C" とで囲まれた図形の面積を S2 と すると,Sのグラフと l の傾きを表すグラフがともにt=1に関して対称 であることから, S1 = S2 であることがわかる。 となるので したがって, S1+S2 = 1 であるとき 3 S=S2=1/ 4 ゆえに 27(1-t)4 (1-t)4 = 16 4 1-t=± t= である。 81 2 5 2 3 3 S2 3 1 S1 iQ C" -l₁ -l₂ 8.0=0.1×8.0= -t + 2 -2t + 3 (8253272609 よって, l1 の傾きは 2 3 {(1) ² - 2.-3} = 3 - (-32) = 32 9 This HAR JO (100%* 2542120-3.0- = 88.0 × 8.0 = (2,02720)1-30=120-20 2806 S1のグラフ S₁ = l1 の傾きm を表すグラフ m=3t2-6t-9 27(1-t)4 4 =3(t-1)2-12 はどちらも t = 1 に関して 対称である。 8.0-Y 20.1 107.5875 AMAS 34 (7.02 YA ■3(t2-2t-3) にt=1/13 を 代入する。 3t2-2t-3) に t= = 1 を代入してもよい。

回答募集中 回答数: 0
数学 高校生

至急です。明日の朝までにお願いしたいです 四角4.5の解説をして欲しいです 数学Bの確率です。

めなさい。 & P₂0x²+1 +²²6-63 5:4 めなさい。 √(x) = 2/(x₂-m) ² Pl 0-3)*x ² + (1-3) × 1 + (²-3) * 一般計+5x+2x1/ 動く点Pを考える。 始め, 点Pの座標は2である。 1個のさいころを 唇だけ正の方向に進むとする。 さいころの出る目を X, 移動後の点Pの 次の問に答えなさい。 計3+4+5+=計計 (2) 確率変数 Y の平均 EY) を求めなさい。 い。 + ① 17 E(Y) = oF(X)+b VY) を求めなさい。 v(Y) = d'v(x) =3.72 1=₁ (4) Xの標準偏差 (X) を求めなさい。 ①3 == ②5 15 v σ(X)= EY) = = 3.2-2 =-2=1 (4) 確率変数 Y の標準偏差 α (Y) を求めなさい。 N o (Y) = - ① 126 6(Y) = N(Y) のカードが4枚ずつあり、各色のカードには1~4までの数が1つずつ 黄のカードからそれぞれ1枚ずつ引き, 赤のカードの数をX, 青と黄 絶対値をYとするとき, 次の問に答えなさい。 EY) と分散 VY) を求めなさい 。 (3 2 I 4 [b] 15 2 4 2 T6 TV X|(4) 42 12 (2) ある製品を製造する過程で、 不良品が出る確率は 0.05 であることが分かっている。この製品を 406 15 1000 個製造するとき, その中に不良品が含まれる個数 X の平均 EX) と標準偏差 (X) を求めな さい。 21 363 <知・技≫ 次の問に答えなさい。 TL- 1個のさいころを90回投げて2以下の目が出る回数をXとする。 このとき, 確率変数Xの平 均 EX) と標準偏差 (X) を求めなさい。 EX) = ①,0(X)= ② ③ 3√√14 EX) = ①,0(X)= 5 <思・判・表原点 0 から出発して数直線上を移動する点Pを考える。 1個のさいころを投げ て5以上の目が出たら正の向きにだけ移動し, それ以外の目が出たら負の向きに2だけ移動 する。 さいころを12回投げた後の点Pの座標をXとし, 5 以上の目が出た回数をY とする とき、次の問に答えなさい。 (1) 確率変数Y の平均 EY) と分散 V(Y) を求めなさい。 2 EY) = ①, V(Y) = (2) XをYで表しなさい。 y-② ② (3) 確率変数 X の平均 EX) と分散 V(X) を求めなさい。 (2 EX= ①,VX)= ③ 2

回答募集中 回答数: 0