学年

教科

質問の種類

数学 高校生

赤線部のようになるのが分からないので教えて頂きたいです!

7 交 30 場合の数と確率 11 場合の数 (1), 例題 11 倍数の個数 6個の数字 0, 1, 2 3 4 5 の中から異なる3個の数字を取り出して, (百の位は 0とはならないように)3桁の整数をつくる。次の3桁の整数は何個できるか。 (1) 321より大きい整数 (2) 2の倍数 (3) 5の倍数 (4) 3の倍数 [13 青山学院大・改 解法へのアプローチ (2)2の倍数は一の位が偶数である。 (4) 3の倍数は,各位の数の和が3の倍数となる。 5の倍数は一の位が0か5である。 (3) e 63 をB, (1) (2) 解答 (1) 百の位が3, 十の位が2の場合, 324, 325 のみで2個。 百の位が 3, 十の位が5の場合 4C1=4 (個) 百の位が3, 十の位が4の場合 4C1=4 (個) 百の位が4の場合 5P2=20(個) 百の位が5の場合 5P2=20(個) よって, 321より大きい整数は 2+4+4+20+20=50(個) (2) 2の倍数は一の位の数字が 0 一の位が0の場合 5P2=20(個) 2 4のものである。 CHOOS 一の位が2の場合 5P2個から 012,032,042,052 を引いて 20-4=16(個) 一の位が4の場合、一の位が2の場合と同様に16個 よって、2の倍数は 20+16×2=52 (個) (3) 5の倍数は一の位の数字が0.5 のものである。自闘を請求 第一の位が0の場合、20個 一の位が5の場合, (2) と同様に考えて 5P2-4=16 (個) 1845 よって, 5の倍数は 20+16=36 (個) (4)3の倍数は各位の数字の和が3の倍数のものである。 0から5までの3つの数字の中で,和が3 の倍数となるものは 0 を含むものは, {0, 1,2}, {0, 1,5}, {0, 2, 4}, {0, 4,5} 0を含まないものは, {1, 2,3},{1, 3,5}, {2, 3,4}, {3, 4, 5} だけある。 例えば, 0, 1,2の場合, できる整数は 3P3-2個 1,2,3の場合、できる整数は 3P 3個であるから, 3の倍数は (3P3-2) ×4+3P3×4=40 (個) 13041 64 ある AHSIN MYIN (2) 5の倍数 (4) 4500より大きく 8500より小さい整数 ★65 (1) (2) ★60 類題にChallenge ★62 5個の数字 0, 2,4, 68 から異なる4個を並べて4桁の整数をつくる。次 の整数は何個できるか。 (1) 4桁の整数 (3)3の倍数 [13 駒澤大] Jr う (1 (2 €

回答募集中 回答数: 0
数学 高校生

この黒い線の引いてあるところがなぜその値を入れていいのかがわかりません

例題 134 例題 194 最大・最小と極限 思考プロセス 関数f(x)= (2)(1) の結果を利用して, (ア) lim (ア) 不等式 logx √x (2) 《Action 直接求めにくい極限値は、はさみうちの原理の利用を考えよ logx □をつくりたい ↑ 極限値が一致する 2 式 S 19 (1) f'(x)= (イ) 前問の結果の利用 のxにおける最大値と最小値を求めよ。 log(logx) √x 2-logx 2x√x よって, 0≦ x X→∞ 考えにくい よりx≧1 のとき logx 2 x log (logx) √x lim X8 練習 194 (1) 関数 f(x) logx (イ) lim X→∞ f'(x)=0 とおくとx=e2 f(x) の増減表は右のように なる。 また,x>1 のとき f(x)>0 であるから e√√ x -5 noits/0) Action》 f(x) の最大値 M, 最小値m は,不等式 m≦f(x) ≧M とせよ x² log (logx) logx (ア) の利用 |f'(x) f(x) 0 x 1 log(log.x) log.x よって, はさみうちの原理より るから, はさみうちの原理より lim x=eのとき最大値 2.2 x=1のとき 最小値0 9 であり, lim X→∞ logx √√x Elim 0≤ ALL- x →∞0 XC logt t-00 t POLLATUM logx √x (1) の利用 見方を変える K log.x lim X48 2 e √ x + 0 2 e 20 (最小値m) ≦ (イ) x≧e のとき logx≧1 であるから, ① より 0≤ log(logx) √x x t = logx とおくと,x →∞ のとき→∞であるから ② より e² 2 e log(logx) logx log(logx) 2 log.x logx e I 7 =0 であ = F0 ・・・ ② log(log.x) √√x の値を求めよ。 = 0 (1) より log.x ≦ (最大値M) ■商の微分法 例題13 (²) = 0 x>1 のとき √x> 1, logx > 0 より f(x) > 0 v'u-vu 各辺に1/14 (①) ける。 x→∞を考えるので、 よって ( > 0)を掛 x≧e としてよい。 030 x≧e より logx≧1 log(log.x) 20 log(log.x) 20 log.x 例題 思考プロセス a 数

未解決 回答数: 1
数学 高校生

2番です。切片がqであることを記述せず急に式に入れて良いのですか?

C q 頂点が点 >0) -all- 81 $6 基本例題89 2次関数の決定 ( 1 ) 2次関数のグラフが次の条件を満たすとき、 その2次関数を求めよ。 (1) 頂点が点(-2, 1) で,点(-1, 4) を通る。 1 (2) 軸が直線x= で、2点(-1, -6 (12) を通る。 2 指針 2次関数を決定する問題で、頂点(p,g) や軸x=が与えられた場合は 基本形 y=a(x-b)+α パール 頂点が(●, Ţ (1) y=a(x+2)²+1, (2) v=a(x - ²)²+g1²0 +q から始め, 通る点などの条件からα, g の値を決定する。 CHART 2次関数の決定 頂点や軸があれば基本形で よって からスタートする。 すなわち,頂点や軸の条件を代入して不y=a(x)+ 解答 (1) 頂点が点(-2, 1) であるから、求める2次関数は y=a(x+2)+1 と表される。 t このグラフが点(-1, 4) を通るから [4=α(−1+2)2+1 (*) ゆえに すなわち これを解いて よって 7536 a=3 y=3(x+2)^+1 (y=3x2+12x+13でもよい) 1 (2) 軸が直線x= であるから 求める 2次関数は 2 y= a (x - ²)² + a と表される。 このグラフが2点(-1, -6),(1,2)を通るから -6=a(-1-2) +9°, 2=a(1-1) +9 p.142 基本事項 9a+4g=-24, a+4g=8 a=-4,g=3 1\2 y=-4(x-1)²+3 (y=-4x²+4x+2でもよい) SLS Whit 軸がx= (*) y=f(x)のグラフが 点 (s,t) を通る ⇔t=f(s) 2=a(1-1) ²+q® <s()_ _3)ACEVO 注意 y=a(x-p'+α と おいて進めたときは,この形 を最終の答えとしてもよい。 なお、本書では,右辺を展開 した y=ax²+bx+c の形の 式も併記した。 - 辺々を引いて 8-32 よって α=-4 第2式から 4g=12 よって g=3 2次関数のグラフが次の条件を満たすとき, その2次関数を求めよ。 ②89 (1) 放物線y=2x+6x+4と頂点が同じで,点(0, -5) を通る。 ② (2) 頂点のx座標が -3 で, 2点(-6, -8),(1, -22) を通る。 100 143 章 2次関数の最大・最小と決定 10

未解決 回答数: 0
数学 高校生

これのトレーニング両方わかんなあいです!

21:39 のさいころを同時に投げると 同じ目が出ない Efte 偶数の目が少なくとも1つ CHART GUIDE P(A)-1-P(A)を利用する。 余事象の確率 「同じ目が出ない」という事は、同じという。 「偶数の目が少なくとも1つ出る」というW 事象の余事象。 2個のさいころの目の出方は 「同じ目が出ない」という事象は、「同じ目が出る」という 事象Aの余事象 A である。 同じ目が出るのは 6通り よって、求める確率は all P(A)=1-P(A)= (2) 「偶数の目が少なくとも1つ出る」 という事は、「2個と も奇数の目が出る」という事象 Aの余事象A である。 2個とも奇数の目が出るのは よって、求める確率は P(A)=1-P(A)=1-3-2 「少なくとも」が出てきたら、余事象の確率を意識 B : 偶個) C : 個奇 COD my Lecture 上の例題 (2) では,右のように3つの互い に排反な事象 B, C, D を定め,加法定 理でP (BUCUD) を求めてもよい。し かし、上の解答のように, 余事象の確率 を考えた方が計算がらくである。 確率の問題では, 「少なくとも」 というキーワードが出てきたら、余事象の確率を考えるとよい。 少なくとも D : 奇個 A: 奇奇・・・ 2つとも奇数 1つは偶数 624 (2 33 13個のさいころを同時に投げるとき、 次の確率を求めよ。 TRAINING (2) 3つの目の和が4にはならない確率 (1) 奇数の目が少なくとも1つ出る確率

回答募集中 回答数: 0